Comparative study of flame propagation characteristics of methane explosion in pipeline with different venting structures at different ignition positions

被引:1
|
作者
Wang, Qiuhong [1 ]
Zhao, Dong [1 ]
Deng, Jun [1 ]
Luo, Zhenmin [1 ]
Dong, Guoqiang [2 ]
Zhu, Leilei [1 ]
Xue, Yunfan [1 ]
机构
[1] Xian Univ Sci & Technol, Coll Safety Sci & Engn, Xian 710054, Peoples R China
[2] Inst Hyg Ordnance Ind, Xian 710065, Peoples R China
关键词
Methane pipeline; Explosion vent; Flame propagation velocity; Explosion pressure; Flame temperature; GAS EXPLOSION;
D O I
10.1016/j.fuel.2024.133317
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The effect of central ignition and four types of explosion vents (circular vents with areas of 22.89, 15.20, and 9.07 cm2 and a cross-shaped vent with an area of 15.20 cm2) on the flame propagation of methane explosions was investigated by using a rectangular blast pipe system and analyzed in comparison with the closed-end ignition condition. Central ignition shows that the flame propagation velocity on both sides of the pipe increases and decreases. The peak pressure decreases as the vent area increases. Specifically, Pm (9.07 cm2) > Pm (15.20 cm2) > Pm (22.89 cm2). The flame temperature at the closed end was consistently higher than that at the vented end. The vm values in the closed-end ignition pipe increased by 20.0 %, 41.8 %, 45.8 %, 40.9 %, 31.5 %, and 19.0 %, respectively, over the central ignition position when the methane concentration was 8-13 %. When the methane concentration deviates from the stoichiometric ratio, the difference in peak pressure between closed-end and central ignition can be up to 0.15 MPa, which is 26.7 % of that of central ignition. The peak temperatures observed at points 1-2 in the closed-end ignition were consistently higher than the central ignition.
引用
收藏
页数:11
相关论文
共 36 条
  • [1] Flame propagation characteristics of methane explosion under different venting conditions
    Wang, Qiuhong
    Jin, Songling
    Luo, Zhenmin
    Dai, Aiping
    Wang, Qingfeng
    Li, Zhouhao
    FUEL, 2023, 334
  • [2] Experimental study on characteristics of flame propagation and pressure development evolution during methane-air explosion in different pipeline structures
    Si, Rongjun
    Zhang, Leilin
    Niu, Yihui
    Wang, Lei
    Huang, Zichao
    Jia, Quansheng
    Li, Ziran
    FRONTIERS IN EARTH SCIENCE, 2024, 12
  • [3] Pressure and temperature characteristics of flame propagation of gas explosion in pipeline
    Wang Q.
    Wang E.
    Chen X.
    Jiang J.
    Zhang M.
    Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 2020, 51 (01): : 239 - 247
  • [4] Comparative study of the effects of ignition location on the flame propagation characteristics and spectral properties of a methane-air premixed gas in a vertical pipeline
    Wang, Qiuhong
    Yan, Yuchen
    Yang, Songping
    Shu, Chi-Min
    Jiang, Juncheng
    Wang, Qingfeng
    Yu, Chengfeng
    Zhu, Leilei
    JOURNAL OF THE ENERGY INSTITUTE, 2024, 113
  • [5] Dynamic characteristics of methane explosion flame propagation in three types of pipe
    Wang, Qiuhong
    Jin, Songling
    Wen, Hu
    Luo, Zhenmin
    Shu, Chi-Min
    Gao, Wei
    Wang, Liwen
    Lu, Xiaoyu
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 172 : 1029 - 1047
  • [6] Flame Characteristics in a Coal Dust Explosion Induced by a Methane Explosion in a Horizontal Pipeline
    Lin, Song
    Liu, Zhentang
    Wang, Zhirong
    Qian, Jifa
    Gu, Zhoujie
    COMBUSTION SCIENCE AND TECHNOLOGY, 2022, 194 (03) : 622 - 635
  • [7] Study on characteristics of methane explosion flame and pressure wave propagation to the non-methane area in a connected chamber
    Gu, Zhoujie
    Liu, Zhentang
    Wang, Zhirong
    Shen, Rongxi
    Qian, Jifa
    Lin, Song
    FIRE AND MATERIALS, 2022, 46 (04) : 639 - 650
  • [8] Experimental study on barrier performances of foamed metals with different blast front structures to prevent methane explosion propagation
    Zhang B.
    Cui J.
    Tao J.
    Wang Y.
    Qin Y.
    Wei C.
    Zhang Y.
    Baozha Yu Chongji/Explosion and Shock Waves, 2023, 43 (02):
  • [9] Flame propagation characteristics and explosion behaviors of aluminum dust explosions in a horizontal pipeline
    Zhang, Shulin
    Bi, Mingshu
    Yang, Mingrui
    Gan, Bo
    Jiang, Haipeng
    Gao, Wei
    POWDER TECHNOLOGY, 2020, 359 : 172 - 180
  • [10] Study on the explosion characteristics and flame propagation of hydrogen-methane-air mixtures in a closed vessel
    Liu, Lu
    Luo, Zhenmin
    Su, Bin
    Song, Fangzhi
    Wu, Pengzhi
    Wang, Tao
    Deng, Jun
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2024, 87