Extracting error thresholds through the framework of approximate quantum error correction condition

被引:2
作者
Zhao, Yuanchen [1 ,2 ]
Liu, Dong E. [1 ,2 ,3 ,4 ]
机构
[1] Tsinghua Univ, Dept Phys, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[2] Frontier Sci Ctr Quantum Informat, Beijing 100184, Peoples R China
[3] Beijing Acad Quantum Informat Sci, Beijing 100193, Peoples R China
[4] Hefei Natl Lab, Hefei 230088, Peoples R China
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 04期
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
CODES;
D O I
10.1103/PhysRevResearch.6.043258
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The robustness of quantum memory against physical noises is measured by two methods: the exact and approximate quantum error correction (QEC) conditions for error recoverability and the decoder-dependent error threshold which assesses if the logical error rate diminishes with system size. Here we unravel their relations and propose a unified framework to extract an intrinsic error threshold from the approximate QEC condition, which could upper bound other decoder-dependent error thresholds. Our proof establishes that relative entropy, effectively measuring deviations from exact QEC conditions, serves as the order parameter delineating the transition from asymptotic recoverability to unrecoverability. Consequently, we establish a unified framework for determining the error threshold across both exact and approximate QEC codes, addressing errors originating from noise channels as well as those from code space imperfections. This result sharpens our comprehension of error thresholds across diverse QEC codes and error models.
引用
收藏
页数:19
相关论文
共 50 条
[41]   Variational Circuit Compiler for Quantum Error Correction [J].
Xu, Xiaosi ;
Benjamin, Simon C. ;
Yuan, Xiao .
PHYSICAL REVIEW APPLIED, 2021, 15 (03)
[42]   QUANTUM ERROR CORRECTION AND FAULT-TOLERANT QUANTUM COMPUTING [J].
Gaitan, Frank ;
Li, Ran .
DECOHERENCE SUPPRESSION IN QUANTUM SYSTEMS 2008, 2010, 3 :53-+
[43]   Quantum error-correction failure distributions: Comparison of coherent and stochastic error models [J].
Barnes, Jeff P. ;
Trout, Colin J. ;
Lucarelli, Dennis ;
Clader, B. D. .
PHYSICAL REVIEW A, 2017, 95 (06)
[44]   Efficient quantum error correction for fully correlated noise [J].
Li, Chi-Kwong ;
Nakahara, Mikio ;
Poon, Yiu-Tung ;
Sze, Nung-Sing ;
Tomita, Hiroyuki .
PHYSICS LETTERS A, 2011, 375 (37) :3255-3258
[45]   Duality in Entanglement-Assisted Quantum Error Correction [J].
Lai, Ching-Yi ;
Brun, Todd A. ;
Wilde, Mark M. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (06) :4020-4024
[46]   Optimal Quantum Control via Adaptive Error Correction [J].
Kosut, Robert L. .
PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, :386-391
[47]   Quantum Error Correction via Less Noisy Qubits [J].
Fujiwara, Yuichiro .
PHYSICAL REVIEW LETTERS, 2013, 110 (17)
[48]   Graph-theoretic approach to quantum error correction [J].
Vandermolen, Robert R. ;
Wright, Duncan .
PHYSICAL REVIEW A, 2022, 105 (03)
[49]   The subfield metric and its application to quantum error correction [J].
Grassl, Markus ;
Horlemann, Anna-Lena ;
Weger, Violetta .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (07)
[50]   Graphical structures for design and verification of quantum error correction [J].
Chancellor, Nicholas ;
Kissinger, Aleks ;
Zohren, Stefan ;
Roffe, Joschka ;
Horsman, Dominic .
QUANTUM SCIENCE AND TECHNOLOGY, 2023, 8 (04)