Extracting error thresholds through the framework of approximate quantum error correction condition

被引:2
作者
Zhao, Yuanchen [1 ,2 ]
Liu, Dong E. [1 ,2 ,3 ,4 ]
机构
[1] Tsinghua Univ, Dept Phys, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[2] Frontier Sci Ctr Quantum Informat, Beijing 100184, Peoples R China
[3] Beijing Acad Quantum Informat Sci, Beijing 100193, Peoples R China
[4] Hefei Natl Lab, Hefei 230088, Peoples R China
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 04期
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
CODES;
D O I
10.1103/PhysRevResearch.6.043258
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The robustness of quantum memory against physical noises is measured by two methods: the exact and approximate quantum error correction (QEC) conditions for error recoverability and the decoder-dependent error threshold which assesses if the logical error rate diminishes with system size. Here we unravel their relations and propose a unified framework to extract an intrinsic error threshold from the approximate QEC condition, which could upper bound other decoder-dependent error thresholds. Our proof establishes that relative entropy, effectively measuring deviations from exact QEC conditions, serves as the order parameter delineating the transition from asymptotic recoverability to unrecoverability. Consequently, we establish a unified framework for determining the error threshold across both exact and approximate QEC codes, addressing errors originating from noise channels as well as those from code space imperfections. This result sharpens our comprehension of error thresholds across diverse QEC codes and error models.
引用
收藏
页数:19
相关论文
共 50 条
[21]   On the Wilsonian Meaning of Quantum Error Correction [J].
Gomez, Cesar .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2021, 69 (02)
[22]   Spatial quantum error correction threshold [J].
Mizel, Ari .
PHYSICAL REVIEW A, 2024, 109 (02)
[23]   ISOCLINIC SUBSPACES AND QUANTUM ERROR CORRECTION [J].
Kribs, David W. ;
Mammarella, David ;
Pereira, Rajesh .
OPERATORS AND MATRICES, 2021, 15 (02) :571-580
[24]   Quantum error correction: an introductory guide [J].
Roffe, Joschka .
CONTEMPORARY PHYSICS, 2019, 60 (03) :226-245
[25]   Experimental Repetitive Quantum Error Correction [J].
Schindler, Philipp ;
Barreiro, Julio T. ;
Monz, Thomas ;
Nebendahl, Volckmar ;
Nigg, Daniel ;
Chwalla, Michael ;
Hennrich, Markus ;
Blatt, Rainer .
SCIENCE, 2011, 332 (6033) :1059-1061
[26]   Quantum error correction with bosonic encoding [J].
Fan, Heng .
CHINESE SCIENCE BULLETIN-CHINESE, 2024, 69 (28-29) :4169-4172
[27]   Using Quantum Metrological Bounds in Quantum Error Correction: A Simple Proof of the Approximate Eastin-Knill Theorem [J].
Kubica, Aleksander ;
Demkowicz-Dobrzanski, Rafal .
PHYSICAL REVIEW LETTERS, 2021, 126 (15)
[28]   Fidelity-based distance bounds for N-qubit approximate quantum error correction [J].
Fiusa, Guilherme ;
Soares-Pinto, Diogo O. ;
Pires, Diego Paiva .
PHYSICAL REVIEW A, 2023, 107 (03)
[29]   Quantum error correction of photon loss with quantum encoding [J].
Han, Chao .
JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2013, 62 (05) :721-724
[30]   Performance of quantum error correction with coherent errors [J].
Huang, Eric ;
Doherty, Andrew C. ;
Flammia, Steven .
PHYSICAL REVIEW A, 2019, 99 (02)