A deep decentralized privacy-preservation framework for online social networks

被引:0
|
作者
Frimpong, Samuel Akwasi [1 ,2 ]
Han, Mu [1 ]
Effah, Emmanuel Kwame [3 ]
Adjei, Joseph Kwame [4 ]
Hanson, Isaac [5 ]
Brown, Percy [4 ]
机构
[1] Jiangsu Univ, Sch Comp Sci & Commun Engn, Zhenjiang 212013, Peoples R China
[2] Ghana Commun Technol Univ, Dept Comp Engn, PMB 100, Accra, Ghana
[3] Ghana Commun Technol Univ, Dept Elect & Elect Engn, PMB 100, Accra, Ghana
[4] Ashesi Univ, Dept Comp Sci & Informat Syst, Accra 3042, Ghana
[5] Ghana Commun Technol Univ, Dept Telecommun Engn, PMB 100, Accra, Ghana
来源
BLOCKCHAIN-RESEARCH AND APPLICATIONS | 2024年 / 5卷 / 04期
关键词
Preprocessing; Privacy-preservation; Blockchain; Deep learning; Online social network; DIFFERENTIAL PRIVACY; PRESERVING-FRAMEWORK; BLOCKCHAIN; ATTACKS;
D O I
10.1016/j.bcra.2024.100233
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper addresses the critical challenge of privacy in Online Social Networks (OSNs), where centralized designs compromise user privacy. We propose a novel privacy-preservation framework that integrates blockchain technology with deep learning to overcome these vulnerabilities. Our methodology employs a two-tier architecture: the first tier uses an elitism-enhanced Particle Swarm Optimization and Gravitational Search Algorithm (ePSOGSA) for optimizing feature selection, while the second tier employs an enhanced Non-symmetric Deep Autoencoder (e-NDAE) for anomaly detection. Additionally, a blockchain network secures users' data via smart contracts, ensuring robust data protection. When tested on the NSL-KDD dataset, our framework achieves 98.79% accuracy, a 10% false alarm rate, and a 98.99% detection rate, surpassing existing methods. The integration of blockchain and deep learning not only enhances privacy protection in OSNs but also offers a scalable model for other applications requiring robust security measures.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Enabling Privacy-Preservation in Decentralized Optimization
    Zhang, Chunlei
    Wang, Yongqiang
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2019, 6 (02): : 679 - 689
  • [2] Ring signature-based blockchain for guaranteeing privacy preservation in online social networks
    Yarava, Anitha
    Bindu, C. Shoba
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (16) : 47151 - 47174
  • [3] A Privacy-Preservation Framework Based on Biometrics Blockchain (BBC) to Prevent Attacks in VANET
    Alharthi, Abdullah
    Ni, Qiang
    Jiang, Richard
    IEEE ACCESS, 2021, 9 : 87299 - 87309
  • [4] Groupchain: A Blockchain Model with Privacy-preservation and Supervision
    Li, Chunpei
    Wang, Li-e
    Xu, Qingting
    Li, Dongchen
    Liu, Peng
    Li, Xianxian
    HP3C 2020: PROCEEDINGS OF THE 2020 4TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPILATION, COMPUTING AND COMMUNICATIONS, 2020, : 42 - 49
  • [5] ARMOR: A trust-based privacy-preserving framework for decentralized friend recommendation in online social networks
    Ma, Xindi
    Ma, Jianfeng
    Li, Hui
    Jiang, Qi
    Gao, Sheng
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 79 : 82 - 94
  • [6] Ring signature-based blockchain for guaranteeing privacy preservation in online social networks
    Anitha Yarava
    C. Shoba Bindu
    Multimedia Tools and Applications, 2024, 83 : 47151 - 47174
  • [7] Blockchain privacy-preservation in Intelligent Transportation Systems
    Hirtan, Liviu-Adrian
    Dobre, Ciprian
    2018 21ST IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE 2018), 2018, : 177 - 184
  • [8] A framework for privacy-preservation of IoT healthcare data using Federated Learning and blockchain technology
    Singh, Saurabh
    Rathore, Shailendra
    Alfarraj, Osama
    Tolba, Amr
    Yoon, Byungun
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2022, 129 : 380 - 388
  • [9] A hybrid deep learning framework for privacy preservation in edge computing
    Rajashree, R. Harine
    Sundarakantham, K.
    Sivasankar, E.
    Shalinie, S. Mercy
    COMPUTERS & SECURITY, 2023, 129
  • [10] Privacy-Preservation for Gradient Descent Methods
    Wan, Li
    Han, Shuguo
    Ng, Wee Keong
    Lee, Vincent C. S.
    KDD-2007 PROCEEDINGS OF THE THIRTEENTH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2007, : 775 - +