Machine Learning-Driven Optimization of Transport Layers in MAPbI3 Perovskite Solar Cells for Enhanced Performance

被引:0
|
作者
Devi, Velpuri Leela [1 ]
Kuchhal, Piyush [1 ]
De, Debasis [2 ]
Sharma, Abhinav [1 ]
Shukla, Neeraj Kumar [3 ,4 ]
Aggarwal, Mona [5 ]
机构
[1] UPES, Elect Cluster, Dehra Dun 248007, Uttarakhand, India
[2] Ctr Rajiv Gandhi Inst Petr Technol, Energy Inst Bengaluru, Bengaluru 562114, Karnataka, India
[3] King Khalid Univ, Coll Engn, Dept Elect Engn, Abha 61421, Saudi Arabia
[4] King Khalid Univ, Ctr Engn & Technol Innovat, Abha 61421, Saudi Arabia
[5] NorthCap Univ, Dept Multidisciplinary Engn, Gurugram 122017, Haryana, India
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Photovoltaic cells; Perovskites; Semiconductor process modeling; Photonic band gap; Computational modeling; Photovoltaic systems; Databases; Performance evaluation; Optimization; Analytical models; MAPbI(3) absorber layer; ETL; HTL; machine learning; SCAPS-1D simulator; OPEN-CIRCUIT VOLTAGE; NUMERICAL-SIMULATION; FABRICATION; IODIDE;
D O I
10.1109/ACCESS.2024.3492378
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study aims to analyse the performance of MAPbI3-based perovskite solar cells (PSCs) by integrating machine learning (ML) models with the SCAPS-1D simulator. An extensive dataset of 28,182 PSCs, combinations of six-electron transport layers, ten-hole transport layers, and MAPbI(3) absorber layer by varying thickness of each layer, has been generated in the SCAPS-1D simulator. In this research work, among those eight ML models, the XGBoost algorithm shows high accuracy for predicting the power conversion efficiency (PCE) of the cell, achieving root mean square error (RMSE) of 0.052 and a coefficient of determination (R-2) of 0.999. Using Pearson correlation and Shapley Additive Explanations (SHAP), the most effective configuration for high-performance PSCs was identified by evaluating parameter significance. SCAPS-1D simulations revealed an optimal configuration comprising 200nm WS2, 900nm MAPbI3, and 500nm CBTS thin layer, achieving a PCE of 24.34%. Further adjustments in doping densities increased the PCE to 34.65%. This research highlights the critical importance of precise material and structural optimization to improve PSC performance. The integration of ML with traditional simulation techniques provides a robust foundation for PSC research, supporting further experimental validation and potential large-scale applications, ultimately advancing more efficient and durable photovoltaic technologies.
引用
收藏
页码:179546 / 179565
页数:20
相关论文
共 50 条
  • [41] Evaporated MAPbI3 Perovskite Planar Solar Cells with Different Annealing Temperature
    Chang, Yi-Tsung
    Tien, Ching-Ho
    Lee, Kun-Yi
    Tung, Yu-Shen
    Chen, Lung-Chien
    ENERGIES, 2021, 14 (08)
  • [42] Cuprous iodide dose dependent passivation of MAPbI3 perovskite solar cells
    Wu, Po-Ting
    Hu, Chun-Chih
    Chen, Liang-Yu
    Lin, Pei-Ying
    Guo, Tzung-Fang
    Fu, Yaw-Shyan
    ORGANIC ELECTRONICS, 2021, 91
  • [43] Improving the Efficiency and Stability of MAPbI3 Perovskite Solar Cells by Dipeptide Molecules
    Li, Mingya
    Yue, Ziyao
    Ye, Zecong
    Li, Huixue
    Luo, Huanting
    Yang, Qing-Dan
    Zhou, Yecheng
    Huo, Yanping
    Cheng, Yuanhang
    SMALL, 2024, 20 (25)
  • [44] Antisolvent treatment of reproducible MAPbI3 perovskite solar cells in ambient atmosphere
    Oh, Jaewon
    Shin, Woojin
    Lee, Hyunbok
    Ryu, Mee-Yi
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2021, 79 (08) : 741 - 745
  • [45] Dimethylammonium Incorporation in Lead Acetate Based MAPbI3 Perovskite Solar Cells
    Franssen, Wouter M. J.
    Bruijnaers, Bardo J.
    Portengen, Victor H. L.
    Kentgens, Arno P. M.
    CHEMPHYSCHEM, 2018, 19 (22) : 3107 - 3115
  • [46] Post-annealing of MAPbI3 perovskite films with methylamine for efficient perovskite solar cells
    Jiang, Yan
    Juarez-Perez, Emilio J.
    Ge, Qianqing
    Wang, Shenghao
    Leyden, Matthew R.
    Ono, Luis K.
    Raga, Sonia R.
    Hu, Jinsong
    Qi, Yabing
    MATERIALS HORIZONS, 2016, 3 (06) : 548 - 555
  • [47] Boosting optoelectronic performance of MAPbI3 perovskite solar cells via ethylammonium chloride additive engineering
    Mateen, Muhammad
    Arain, Zulqarnain
    Liu, Xuepeng
    Iqbal, Atif
    Ren, Yingke
    Zhang, Xianfu
    Liu, Cheng
    Chen, Qin
    Ma, Shuang
    Ding, Yong
    Cai, Molang
    Dai, Songyuan
    SCIENCE CHINA-MATERIALS, 2020, 63 (12) : 2477 - 2486
  • [48] Enhanced Conversion Efficiency in MAPbI3 Perovskite Solar Cells through Parameters Optimization via SCAPS-1D Simulation
    Son, Chaerin
    Son, Hyojung
    Jeong, Byoung-Seong
    APPLIED SCIENCES-BASEL, 2024, 14 (06):
  • [49] Optimization of Electron Transport Layers for High Performance Perovskite Solar Cells
    Aidarkhanov, Damir
    Maxim, Askar
    Ren, Zhiwei
    Yelzhanova, Zhuldyz
    Ualibek, Oral
    Daniyar, Bayan
    Saibitihan, Aheyeerke
    Balanay, Mannix
    Djurisic, Aleksandra
    Surya, Charles
    Ng, Annie
    2020 IEEE ELECTRON DEVICES TECHNOLOGY AND MANUFACTURING CONFERENCE (EDTM 2020), 2020,
  • [50] Enhanced power conversion efficiency and preferential orientation of the MAPbI3 perovskite solar cells by introduction of urea as additive
    Li, Ying
    Li, Lingwei
    Yerramilli, Aditya S.
    Chen, Yuanqing
    Fang, Daining
    Shen, Yuxia
    Alford, T. L.
    ORGANIC ELECTRONICS, 2019, 73 : 130 - 136