Machine Learning-Driven Optimization of Transport Layers in MAPbI3 Perovskite Solar Cells for Enhanced Performance

被引:0
|
作者
Devi, Velpuri Leela [1 ]
Kuchhal, Piyush [1 ]
De, Debasis [2 ]
Sharma, Abhinav [1 ]
Shukla, Neeraj Kumar [3 ,4 ]
Aggarwal, Mona [5 ]
机构
[1] UPES, Elect Cluster, Dehra Dun 248007, Uttarakhand, India
[2] Ctr Rajiv Gandhi Inst Petr Technol, Energy Inst Bengaluru, Bengaluru 562114, Karnataka, India
[3] King Khalid Univ, Coll Engn, Dept Elect Engn, Abha 61421, Saudi Arabia
[4] King Khalid Univ, Ctr Engn & Technol Innovat, Abha 61421, Saudi Arabia
[5] NorthCap Univ, Dept Multidisciplinary Engn, Gurugram 122017, Haryana, India
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Photovoltaic cells; Perovskites; Semiconductor process modeling; Photonic band gap; Computational modeling; Photovoltaic systems; Databases; Performance evaluation; Optimization; Analytical models; MAPbI(3) absorber layer; ETL; HTL; machine learning; SCAPS-1D simulator; OPEN-CIRCUIT VOLTAGE; NUMERICAL-SIMULATION; FABRICATION; IODIDE;
D O I
10.1109/ACCESS.2024.3492378
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study aims to analyse the performance of MAPbI3-based perovskite solar cells (PSCs) by integrating machine learning (ML) models with the SCAPS-1D simulator. An extensive dataset of 28,182 PSCs, combinations of six-electron transport layers, ten-hole transport layers, and MAPbI(3) absorber layer by varying thickness of each layer, has been generated in the SCAPS-1D simulator. In this research work, among those eight ML models, the XGBoost algorithm shows high accuracy for predicting the power conversion efficiency (PCE) of the cell, achieving root mean square error (RMSE) of 0.052 and a coefficient of determination (R-2) of 0.999. Using Pearson correlation and Shapley Additive Explanations (SHAP), the most effective configuration for high-performance PSCs was identified by evaluating parameter significance. SCAPS-1D simulations revealed an optimal configuration comprising 200nm WS2, 900nm MAPbI3, and 500nm CBTS thin layer, achieving a PCE of 24.34%. Further adjustments in doping densities increased the PCE to 34.65%. This research highlights the critical importance of precise material and structural optimization to improve PSC performance. The integration of ML with traditional simulation techniques provides a robust foundation for PSC research, supporting further experimental validation and potential large-scale applications, ultimately advancing more efficient and durable photovoltaic technologies.
引用
收藏
页码:179546 / 179565
页数:20
相关论文
共 50 条
  • [1] Machine learning enhanced characterization and optimization of photonic cured MAPbI3 for efficient perovskite solar cells
    Allen, Cody R.
    Bhandari, Bishal
    Xu, Weijie
    Lee, Mark
    Hsu, Julia W. P.
    JOURNAL OF MATERIALS INFORMATICS, 2024, 4 (04):
  • [2] Study on Performance Optimization of Perovskite Solar Cells Based on MAPbI3
    Liang, Cang
    Huang, Zhiyuan
    Su, Jie
    Shi, Lei
    Liang, Suxia
    Dong, Yuan
    ADVANCED THEORY AND SIMULATIONS, 2024, 7 (05)
  • [3] Enhanced stability of MAPbI3 based perovskite solar cells
    Ahmad, Khursheed
    Kim, Haekyoung
    MATERIALS LETTERS, 2022, 318
  • [4] Machine learning (ML)-assisted optimization doping of KI in MAPbI3 solar cells
    Sheng Jiang
    Cun-Cun Wu
    Fan Li
    Yu-Qing Zhang
    Ze-Hao Zhang
    Qiao-Hui Zhang
    Zhi-Jian Chen
    Bo Qu
    Li-Xin Xiao
    Min-Lin Jiang
    Rare Metals, 2021, 40 : 1698 - 1707
  • [5] Machine learning(ML)-assisted optimization doping of KI in MAPbI3 solar cells
    Sheng Jiang
    Cun-Cun Wu
    Fan Li
    Yu-Qing Zhang
    Ze-Hao Zhang
    Qiao-Hui Zhang
    Zhi-Jian Chen
    Bo Qu
    Li-Xin Xiao
    Min-Lin Jiang
    RareMetals, 2021, 40 (07) : 1698 - 1707
  • [6] Impact of charge transport layers on the photochemical stability of MAPbI3 in thin films and perovskite solar cells
    Boldyreva, A. G.
    Akbulatov, A. F.
    Elnaggar, M.
    Luchkin, S. Yu
    Danilov, A. V.
    Zhidkov, I. S.
    Yamilova, O. R.
    Fedotov, Yu S.
    Bredikhin, S. I.
    Kurmaev, E. Z.
    Stevenson, K. J.
    Troshin, P. A.
    SUSTAINABLE ENERGY & FUELS, 2019, 3 (10): : 2705 - 2716
  • [7] Exploring the impact of kesterite charge transport layers on the photovoltaic properties of MAPbI3 perovskite solar cells
    Noman, Muhammad
    Sherwani, Tayyab
    Jan, Shayan Tariq
    Ismail, Muhammad
    PHYSICA SCRIPTA, 2023, 98 (12)
  • [8] Optimization of MAPbI3 Perovskite Solar Cell with Nano Structures
    Hsieh, Yu-Chin
    Huang, Jun-Yu
    Wu, Yuh-Renn
    2018 18TH INTERNATIONAL CONFERENCE ON NUMERICAL SIMULATION OF OPTOELECTRONIC DEVICES (NUSOD 2018), 2018, : 137 - 138
  • [9] Numerical investigation of MAPbI3 perovskite solar cells for performance limiting parameters
    Prasanna, J. Lakshmi
    Goel, Ekta
    Kumar, Amarjit
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (07)
  • [10] Enhanced Efficiency of MAPbI3 Perovskite Solar Cells with FAPbX3 Perovskite Quantum Dots
    Chen, Lung-Chien
    Tien, Ching-Ho
    Tseng, Zong-Liang
    Ruan, Jun-Hao
    NANOMATERIALS, 2019, 9 (01)