The quadratic knapsack problem with setup

被引:2
|
作者
Galli, Laura [1 ]
Martello, Silvano [2 ]
Rey, Carlos [3 ]
Toth, Paolo [2 ]
机构
[1] Univ Bologna, Dept Math, Alma Mater Studiorum, Bologna, Italy
[2] Univ Bologna, DEI Guglielmo Marconi, Alma Mater Studiorum, Bologna, Italy
[3] Univ BiObio Concepcion, Dept Ind Engn, Concepcion 4030000, Chile
关键词
Quadratic knapsack problem; Setup constraints; Matheuristic algorithms; Local search; ALGORITHM; SEARCH;
D O I
10.1016/j.cor.2024.106873
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Quadratic Knapsack Problem is a well-known generalization of the classical 0-1 knapsack problem, in which any pair of items produces a pairwise profit if both are selected. Another relevant generalization of the knapsack problem is the Knapsack Problem with Setup, in which the items are partitioned into classes, the items of a class can only be inserted into the knapsack if the corresponding class is activated, and activating a class involves a setup cost and a setup capacity reduction. Despite a rich literature on these two problems, their obvious generalization, i.e., the Quadratic Knapsack Problem with Setup, was never investigated so far. We discuss applications, mathematical models, deterministic matheuristic algorithms, and computationally evaluate their performance.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] On the rectangular knapsack problem: approximation of a specific quadratic knapsack problem
    Britta Schulze
    Michael Stiglmayr
    Luís Paquete
    Carlos M. Fonseca
    David Willems
    Stefan Ruzika
    Mathematical Methods of Operations Research, 2020, 92 : 107 - 132
  • [2] On the rectangular knapsack problem: approximation of a specific quadratic knapsack problem
    Schulze, Britta
    Stiglmayr, Michael
    Paquete, Luis
    Fonseca, Carlos M.
    Willems, David
    Ruzika, Stefan
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2020, 92 (01) : 107 - 132
  • [3] The quadratic knapsack problem - a survey
    Pisinger, David
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (05) : 623 - 648
  • [4] Approximation of the Quadratic Knapsack Problem
    Taylor, Richard
    OPERATIONS RESEARCH LETTERS, 2016, 44 (04) : 495 - 497
  • [5] On the continuous quadratic knapsack problem
    Robinson, A.G.
    Jiang, N.
    Lerme, C.S.
    Mathematical Programming, Series A, 1992, 55 (01): : 99 - 108
  • [6] Approximation of the Quadratic Knapsack Problem
    Pferschy, Ulrich
    Schauer, Joachim
    INFORMS JOURNAL ON COMPUTING, 2016, 28 (02) : 308 - 318
  • [7] Parametric convex quadratic relaxation of the quadratic knapsack problem
    Fampa, M.
    Lubke, D.
    Wang, F.
    Wolkowicz, H.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2020, 281 (01) : 36 - 49
  • [8] Fast Algorithm for the Quadratic Knapsack Problem
    Plotkin, A. V.
    VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2022, 55 (01) : 57 - 63
  • [9] Fast Algorithm for the Quadratic Knapsack Problem
    A. V. Plotkin
    Vestnik St. Petersburg University, Mathematics, 2022, 55 : 57 - 63
  • [10] Asymptotic behavior of the quadratic knapsack problem
    Schauer, Joachim
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2016, 255 (02) : 357 - 363