Excitation and decay dynamics of 1s2s inner-shell double-vacancy states of neon atoms

被引:5
作者
College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China [1 ]
不详 [2 ]
不详 [3 ]
不详 [4 ]
不详 [5 ]
机构
[1] College of Physics and Electronic Engineering, Northwest Normal University
[2] Center of Theoretical Nuclear Physics, National Laboratory of Heavy-Ion Accelerator of Lanzhou
[3] Physics Department, School of Medicine, Kitasato University, 228-8555
[4] National Institute for Fusion Science, Nagoya
[5] Department of Physics, University of Kassel, D-34132, Kassel
来源
Chin. Phys. | 2008年 / 2卷 / 592-598期
关键词
Auger decay; Correlation effects; Multi-configuration Dirac-Fock (MCDF) method;
D O I
10.1088/1674-1056/17/2/039
中图分类号
学科分类号
摘要
The photo-excitation and Auger decay processes of inner-shell double vacancy states 1s2s2p6(1,3S)3s3p of neutral neon atoms have been studied theoretically. Multi-configuration Dirac-Fock (MCDF) calculations have been carried out, with electron correlation effects taken into consideration. The relaxation of core and excited orbitals and configuration interaction are found to be crucial to creating the double vacancy states by single photo-absorption. The predominant decay paths for the double vacancy states turn out to be of the LLM Auger decay to 1s 2s22p 53s(3p), KLL Auger decay to 1s22s2p43s3p, and KLM Auger decay to 1s22p63s(3p). They lead to further Auger decay, creating the neon ions of multiple charge states. For both double and single vacancy states the spectator type of Auger process is dominated in all the Auger decay processes. Theoretical Auger electron spectra are presented for further investigations, experimental and theoretical. © 2008 Chin. Phys. Soc. and IOP Publishing Ltd.
引用
收藏
页码:592 / 598
页数:6
相关论文
共 27 条
[1]  
Madden R.P., Codling K., Phys. Rev. Lett., 10, 12, (1963)
[2]  
Madden R.P., Codling K., Astrophys. J., 141, (1965)
[3]  
Domke M., Schulz K., Remmers G., Kaindl G., Wintgen D., Phys. Rev., 53, 3, (1996)
[4]  
Kiernan L.M., Kennedy E.T., Mosnier J.P., Costello J.T., Sonntag B.F., Phys. Rev. Lett., 72, 15, (1994)
[5]  
Azuma Y., Koike F., Cooper J.W., Nagata T., Kutluk G., Shigemasa E., Wehlitz R., Sellin I.A., Phys. Rev. Lett., 79, 13, (1997)
[6]  
Diehl S., Cubaynes D., Wuilleumier F.J., Bizau J.M., Journel L., Kennedy E.T., Blancard C., Voky L., Faucher P., Hib-Bert A., Berrah N., Morgan T.J., Bozek J., Schlachter A.S., Phys. Rev. Lett., 79, 7, (1997)
[7]  
Menzel A., Frigo S.P., Whitfield S.B., Caldwell C.D., Krause M.O., Tang J.Z., Shimamura I., Phys. Rev. Lett., 75, 8, (1995)
[8]  
Zhuang X., Bacalis N.C., Chin. Phys., 16, 2, (2007)
[9]  
Hongwei H., Chenzhong D., Acta Phys. Sin., 55, (2006)
[10]  
Esteva J.M., Gautheb, Dhez P., J. Phys. B: At. Mol. Opt. Phys., 16, 9, (1983)