Current Summation-Based Inductance Asymmetry Compensation for High Frequency Signal Injection Sensorless Control of Dual Three-Phase IPMSMs

被引:2
作者
Chen, Yang [1 ]
Zhu, Z. Q. [1 ]
Wu, Ximeng [1 ]
Liu, Chaohui [2 ]
Yang, Lianghui [3 ]
Yuan, Yiqing [3 ]
Yang, Han [3 ]
Huang, Yiming [3 ]
机构
[1] Univ Sheffield, Dept Elect & Elect Engn, Sheffield S1 3JD, England
[2] Natl New Energy Vehicle Technol Innovat Ctr NEVC, Powertrain Dept, Beijing 100176, Peoples R China
[3] Natl New Energy Vehicle Technol Innovat Ctr NEVC X, Xiamen 361100, Peoples R China
关键词
Dual three-phase ipmsm; high frequency signal injection; inductance asymmetry; sensorless control; signal-to-noise ratio; MAGNET SYNCHRONOUS MACHINE; SEQUENCE CARRIER VOLTAGE; ROTOR POSITION; CONTROL SCHEME; DRIVES; BANDWIDTH; ACCURACY;
D O I
10.1109/TIA.2024.3426479
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper proposes a simple inductance asymmetry compensation method for minimizing the second-order harmonic current responses and the corresponding position errors in high frequency signal injection sensorless controlled dual three-phase interior permanent magnet synchronous machines (IPMSMs). It is found that the second-order harmonics of HF current responses in two sets of dual three-phase windings due to self-inductance asymmetry have opposite phase angles in the double dq control method. Thus, a simple current summation-based position error compensation method including an online calculation technique of harmonic amplitude ratio is proposed. The proposed compensation method can not only suppress the second-order position error effectively but also maintain a high signal-to-noise ratio of the sensorless control system. It is validated by experiments under different inductance asymmetry conditions.
引用
收藏
页码:6959 / 6975
页数:17
相关论文
共 27 条
[1]   Improved Pulsating Signal Injection Using Zero-Sequence Carrier Voltage for Sensorless Control of Dual Three-Phase PMSM [J].
Almarhoon, Ali H. ;
Zhu, Z. Q. ;
Xu, P. L. .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2017, 32 (02) :436-446
[2]   Improved Rotor Position Estimation Accuracy by Rotating Carrier Signal Injection Utilizing Zero-Sequence Carrier Voltage for Dual Three-Phase PMSM [J].
Almarhoon, Ali Habib ;
Zhu, Z. Q. ;
Xu, Peilin .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (06) :4454-4462
[3]   Analysis of Double-Star Permanent-Magnet Synchronous Generators by a General Decoupled d-q Model [J].
Andriollo, Mauro ;
Bettanini, Giulio ;
Martinelli, Giovanni ;
Morini, Augusto ;
Tortella, Andrea .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2009, 45 (04) :1416-1424
[4]   Sensorless Rotor Position Detection Capability of a Dual Three-Phase Fractional-Slot IPM Machine [J].
Barcaro, Massimo ;
Faggion, Adriano ;
Bianchi, Nicola ;
Bolognani, Silverio .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2012, 48 (06) :2068-2078
[5]  
Chen Y., 2022, P IEEE 2022 2 INT C, P1
[6]   A Novel Inductance Asymmetry Compensation Method for High Frequency Signal Injection Sensorless Control of Dual Three-Phase IPMSMs [J].
Chen, Yang ;
Zhu, Zi Qiang ;
Wu, Ximeng ;
Liu, Chaohui .
2023 IEEE INTERNATIONAL ELECTRIC MACHINES & DRIVES CONFERENCE, IEMDC, 2023,
[7]   An extended electromotive force model for sensorless control of interior permanent-maghet synchronous motors [J].
Chen, ZQ ;
Tomita, M ;
Doki, S ;
Okuma, S .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2003, 50 (02) :288-295
[8]   Rotor position and velocity estimation for a salient-pole permanent magnet synchronous machine at standstill and high speeds [J].
Corley, MJ ;
Lorenz, RD .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 1998, 34 (04) :784-789
[9]   Accuracy, bandwidth, and stability limits of carrier-signal-injection-based sensorless control methods [J].
Garcia, Pablo ;
Briz, Fernando ;
Degner, Michael W. ;
Diaz-Reigosa, David .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2007, 43 (04) :990-1000
[10]   A Synchronous Current Control Scheme for Multiphase Induction Motor Drives [J].
Jones, Martin ;
Vukosavic, Slobodan N. ;
Dujic, Drazen ;
Levi, Emil .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2009, 24 (04) :860-868