Self-adhesive, stretchable, anti-freezing conductive organohydrogels with fast gelation from catechol-metal ion self-catalytic system for flexible strain sensors

被引:0
|
作者
Wei, Shihai [1 ,2 ]
Wang, Xuwei [1 ,2 ]
Yang, Jisheng [1 ,2 ]
Qin, Zhiyong [1 ,2 ]
Ma, Chao [3 ]
Jiang, Qiong [4 ]
Mo, Liuting [1 ,2 ]
机构
[1] Guangxi Univ, Sch Resources Environm & Mat, Nanning 530004, Peoples R China
[2] Guangxi Univ, State Key Lab Featured Met Mat & Lifecycle Safety, Nanning 530004, Guangxi, Peoples R China
[3] Anhui Agr Univ, Coll Mat & Chem, Hefei 230036, Peoples R China
[4] Med Coll Guangxi Univ, Med Coll, Nanning 530004, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Tannic acid-ferric ions; Organohydrogel; Mechanical performance; Anti-freezing; Flexible strain sensors; HYDROGEL; TRANSPARENT;
D O I
10.1016/j.polymer.2024.127877
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Conductive hydrogels have attracted tremendous attention in flexible sensors due to their flexibility, durability, and multifunctionality. However, time and energy-consumption fabrication process and intrinsic instability in extreme environments severely limit their practical implementations. Herein, a universal and facile synergetic self-catalytic system based on catechol-based molecules and metal ions has been developed to the fast gelation (approximate to 3s) of conductive organohydrogels in water-ethylene glycol (EG) binary solvent, which exhibits excellent stretchability (up to 630 % elongation), satisfactory self-adhesion (up to 16.3 kPa), and extreme environment applicability (-80 degrees C to 45 degrees C). This dual self-catalytic system consists of tannic acid (TA) and ferric ions (Fe3+), which form stable redox pairs to activate ammonium persulfate to generate free radicals, rapidly initiating the polymerization of monomers. Furthermore, the introduction of H2O/EG binary solvent not only facilitates the dispersion of components to improve the mechanical performance of organohydrogels, but also the generation of abundant hydrogen bonds between EG and water molecules endows extreme freezing drying resistance, and enhances self-adhesion for organohydrogels. The organohydrogels showing high sensitivity toward tensile deformation are assembled into flexible strain sensors to detect human motions with high sensitivity, exceptional stability, and excellent durability, which holds great promise in flexible electronics.
引用
收藏
页数:11
相关论文
共 33 条
  • [1] Stretchable, transparent, self-adhesive, anti-freezing and ionic conductive nanocomposite hydrogels for flexible strain sensors
    Zhang, Yi
    Liu, Han
    Wang, Ping
    Yu, Yuanyuan
    Zhou, Man
    Xu, Bo
    Cui, Li
    Wang, Qiang
    EUROPEAN POLYMER JOURNAL, 2023, 186
  • [2] Stretchable, self-adhesive, conductive, anti-freezing sodium polyacrylate-based composite hydrogels for wearable flexible strain sensors
    Liu, Ruixue
    Chen, Jichao
    Luo, Zongqing
    Zhang, Xiaojing
    Chen, Weihang
    Niu, Zhibin
    REACTIVE & FUNCTIONAL POLYMERS, 2022, 172
  • [3] Highly Stretchable, Self-Adhesive, Antidrying Ionic Conductive Organohydrogels for Strain Sensors
    Huang, Xinmin
    Wang, Chengwei
    Yang, Lianhe
    Ao, Xiang
    MOLECULES, 2023, 28 (06):
  • [4] Ultra-stretchable and self-healable hydrogel driven by sorbitol for flexible strain sensors with anti-freezing and self-adhesive
    Huang, Cong
    Miao, Qiqi
    He, Zongjie
    Fan, Pu
    Chen, Yuhui
    Zhang, Qi
    He, Xiao
    Li, Ling
    Liu, Xiaoguang
    EUROPEAN POLYMER JOURNAL, 2022, 172
  • [5] Ultra-stretchable and self-healable hydrogel driven by sorbitol for flexible strain sensors with anti-freezing and self-adhesive
    Huang, Cong
    Miao, Qiqi
    He, Zongjie
    Fan, Pu
    Chen, Yuhui
    Zhang, Qi
    He, Xiao
    Li, Ling
    Liu, Xiaoguang
    European Polymer Journal, 2022, 172
  • [6] Transparent, Self-Adhesive, Conductive Organohydrogels with Fast Gelation from Lignin-Based Self-Catalytic System for Extreme Environment-Resistant Triboelectric Nanogenerators
    Sun, Dan
    Feng, Yufan
    Sun, Shaochao
    Yu, Jie
    Jia, Siyu
    Dang, Chao
    Hao, Xiang
    Yang, Jun
    Ren, Wenfeng
    Sun, Runcang
    Shao, Changyou
    Peng, Feng
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (28)
  • [7] Self-Adhesive, Anti-Freezing Multifunctional Zwitterionic Hydrogels with Lignin-Promoted Rapid Gelation for Flexible Strain Sensors
    He, Yutong
    Sun, Shaochao
    Zhang, Xinxu
    Xu, Ying
    Zhang, Chen
    Shao, Changyou
    Yang, Jun
    Wen, Jialong
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (31): : 11809 - 11820
  • [8] A highly stretchable, self-adhesive, anti-freezing dual-network conductive carboxymethyl chitosan based hydrogel for flexible wearable strain sensor
    Wang, Shuai
    Li, Jinyang
    Zhang, Li
    Ren, Fazhan
    Zhang, Jiale
    Ren, Lili
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2025, 308
  • [9] Self-healing, self-adhesive, stretchable and flexible conductive hydrogels for high-performance strain sensors
    Li, Ruirui
    Ren, Jie
    Li, Meng
    Zhang, Minmin
    Li, Yan
    Yang, Wu
    SOFT MATTER, 2023, 19 (30) : 5723 - 5736
  • [10] Tough, Anti-Fatigue, Self-Adhesive, and Anti-Freezing Hydrogel Electrolytes for Dendrite-Free Flexible Zinc Ion Batteries and Strain Sensors
    Chen, Zong-Ju
    Shen, Tian-Yu
    Zhang, Min-Hao
    Xiao, Xiong
    Wang, Hong-Qin
    Lu, Qing-Ru
    Luo, Yan-Long
    Jin, Zhong
    Li, Cheng-Hui
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (26)