Analytical and numerical study of plane progressive thermoacoustic shock waves in complex plasmas

被引:1
作者
Misra, A. P. [1 ]
Banerjee, Gadadhar [1 ,2 ]
机构
[1] Visva Bharati Univ, Dept Math, Siksha Bhavana, Santini Ketan 731 235, India
[2] Univ Burdwan, Burdwan Raj Coll, Dept Math, Burdwan 713104, India
关键词
Acoustic wave; Thermoacoustic shocks; Instability; Complex plasmas;
D O I
10.1016/j.wavemoti.2024.103451
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The formation of thermoacoustic shocks is studied in a fluid complex plasma. The thermoacoustic wave mode can be damped (or anti-damped) when the contribution from the thermoacoustic interaction is lower (or higher) than that due to the particle collision and/or the kinematic viscosity. In the nonlinear regime, the thermoacoustic wave, propagating with the acoustic speed, can evolve into small amplitude shocks whose dynamics are governed by the Bateman- Burgers equation with an additional nonlinear term that appears due to the particle collision and nonreciprocal interactions of charged particles providing the thermal feedback. The appearance of such nonlinearity can cause the shock fronts to be stable (or unstable) depending on the collision frequency remains below (or above) a critical value and the thermal feedback is positive. The existence of different kinds of shocks and their characteristics are analyzed analytically and numerically with the system parameters that characterize the thermal feedback, thermal diffusion, heat capacity per fluid particle, the particle collision and the fluid viscosity. A good agreement between analytical and numerical results is also noticed.
引用
收藏
页数:13
相关论文
共 19 条
[11]   Nonlinear saturation of the thermoacoustic instability [J].
Karpov, S ;
Prosperetti, A .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2000, 107 (06) :3130-3147
[12]   On the structure and stability of supersonic hydrogen flames in channels [J].
Kiverin, A. D. ;
Yakovenko, I. S. ;
Ivanov, M. F. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (47) :22465-22478
[13]   Thermoacoustic Instability in Two-Dimensional Fluid Complex Plasmas [J].
Kryuchkov, Nikita P. ;
Yakovlev, Egor V. ;
Gorbunov, Evgeny A. ;
Couedel, Lenaic ;
Lipaev, Andrey M. ;
Yurchenko, Stanislav O. .
PHYSICAL REVIEW LETTERS, 2018, 121 (07)
[14]   APPROXIMATE SOLUTION OF THE DAMPED BURGERS-EQUATION [J].
MALFLIET, W .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (16) :L723-L728
[15]   Double-layer shocks in a magnetized quantum plasma [J].
Misra, A. P. ;
Samanta, S. .
PHYSICAL REVIEW E, 2010, 82 (03)
[16]   Thermoacoustic instabilities: Should the Rayleigh criterion be extended to include entropy changes? [J].
Nicoud, F ;
Poinsot, T .
COMBUSTION AND FLAME, 2005, 142 (1-2) :153-159
[17]   Linear and nonlinear modelling of a theoretical travelling-wave thermoacoustic heat engine [J].
Scalo, Carlo ;
Lele, Sanjiva K. ;
Hesselink, Lambertus .
JOURNAL OF FLUID MECHANICS, 2015, 766 :368-404
[18]  
Sugimoto N., 2019, Appl. Wave Math., VII, P187
[19]   Flame propagation in two-dimensional solids: Particle-resolved studies with complex plasmas [J].
Yurchenko, S. O. ;
Yakovlev, E. V. ;
Couedel, L. ;
Kryuchkov, N. P. ;
Lipaev, A. M. ;
Naumkin, V. N. ;
Kislov, A. Yu. ;
Ovcharov, P. V. ;
Zaytsev, K. I. ;
Vorob'ev, E. V. ;
Morfill, G. E. ;
Ivlev, A. V. .
PHYSICAL REVIEW E, 2017, 96 (04)