A penalty method for approximation of the stationary Stokes-Darcy problem

被引:0
作者
Han, Wei-Wei [1 ]
Jiang, Yao-Lin [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
关键词
Penalty method; Stokes-Darcy problem; FEM; Convergence; Numerical analysis; FINITE-ELEMENT-METHOD; INTERFACE BOUNDARY-CONDITION; COUPLING FLUID-FLOW; BEAVERS; JOSEPH; MODEL; SURFACE;
D O I
10.1016/j.cam.2024.116272
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, the penalty method is studied for the mixed Stokes-Darcy problem, motivated by the penalty method applied to Stokes equation. This work first proposes the penalty Stokes- Darcy model at the continuous level. Then we prove that the solution of the penalty model converges strongly to the original solution as O(epsilon) in which the penalty parameter is epsilon -> 0 . What is more, the finite element method is used to solve the penalty model and the optimal error estimates are presented. Finally, several numerical tests are carried out to verify our theoretical results.
引用
收藏
页数:9
相关论文
共 35 条
[1]  
[Anonymous], 2012, Finite element methods for Navier-Stokes equations: theory and algorithms
[2]  
Bear J., 2013, DOVER CIVIL MECH ENG, DOI DOI 10.1097/00010694-197508000-00022
[3]   BOUNDARY CONDITIONS AT A NATURALLY PERMEABLE WALL [J].
BEAVERS, GS ;
JOSEPH, DD .
JOURNAL OF FLUID MECHANICS, 1967, 30 :197-&
[4]   Optimal Error Estimates of the Penalty Finite Element Method for the Unsteady Navier-Stokes Equations with Nonsmooth Initial Data [J].
Bir, Bikram ;
Goswami, Deepjyoti ;
Pani, Amiya K. .
JOURNAL OF SCIENTIFIC COMPUTING, 2024, 98 (02)
[5]   An improved penalty method for power-law Stokes problems [J].
Borggaard, Jeff ;
Iliescu, Traian ;
Roop, John Paul .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 223 (02) :646-658
[6]  
Brezzi F., 2012, MIXED HYBRID FINITE
[7]   A multilevel decoupled method for a mixed Stokes/Darcy model [J].
Cai, Mingchao ;
Mu, Mo .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (09) :2452-2465
[8]   THE BEAVERS-JOSEPH INTERFACE BOUNDARY CONDITION IS WELL APPROXIMATED BY THE BEAVERS--JOSEPH--SAFFMAN--JONES INTERFACE BOUNDARY CONDITION [J].
Cao, Y. I. N. I. N. G. ;
Wang, X. I. A. O. M. I. N. G. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2022, 82 (03) :1020-1044
[9]   FINITE ELEMENT APPROXIMATIONS FOR STOKES-DARCY FLOW WITH BEAVERS-JOSEPH INTERFACE CONDITIONS [J].
Cao, Yanzhao ;
Gunzburger, Max ;
Hu, Xiaolong ;
Hua, Fei ;
Wang, Xiaoming ;
Zhao, Weidong .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 47 (06) :4239-4256
[10]  
Cao YZ, 2010, COMMUN MATH SCI, V8, P1