Did the terrestrial planets of the solar system form by pebble accretion?

被引:4
作者
Morbidelli, A. [1 ,2 ]
Kleine, T. [3 ]
Nimmo, F. [4 ]
机构
[1] Sorbonne Univ, PSL Univ, Coll France, CNRS, F-75014 Paris, France
[2] Univ Cote Azur, Observ Cote Azur, CNRS, Lab Lagrange, Blvd Observ, F-06304 Nice 4, France
[3] Max Planck Inst Solar Syst Res, Justus Von Liebig Weg 3, D-37077 Gottingen, Germany
[4] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95060 USA
基金
欧洲研究理事会;
关键词
Earth; Meteorites; Pebble accretion; Planetesimals; Giant impacts; Nucleaosyntheticisotopic anomalies; GIANT PLANETS; ORIGIN; EARTH; EVOLUTION; SILICATE; METAL; PLANETESIMALS; CONSTRAINTS; ANOMALIES; MARS;
D O I
10.1016/j.epsl.2024.119120
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The dominant accretion process leading to the formation of the terrestrial planets of the Solar System is a subject of intense scientific debate. Two radically different scenarios have been proposed. The classic scenario starts from a disk of planetesimals which, by mutual collisions, produce a set of Moon to Mars-mass planetary embryos. After the removal of gas from the disk, the embryos experience mutual giant impacts which, together with the accretion of additional planetesimals, lead to the formation of the terrestrial planets on a timescale of tens of millions of years. In the alternative, pebble accretion scenario, the terrestrial planets grow by accreting sunwarddrifting mm-cm sized particles from the outer disk. The planets all form within the lifetime of the disk, with the sole exception of Earth, which undergoes a single post-disk giant impact with Theia (a fifth protoplanet formed by pebble accretion itself) to form the Moon. To distinguish between these two scenarios, we revisit all available constraints: compositional (in terms of nucleosynthetic isotope anomalies and chemical composition), dynamical and chronological. We find that the pebble accretion scenario is unable to match these constraints in a selfconsistent manner, unlike the classic scenario.
引用
收藏
页数:11
相关论文
共 82 条
  • [1] The Disk Substructures at High Angular Resolution Project (DSHARP). I. Motivation, Sample, Calibration, and Overview
    Andrews, Sean M.
    Huang, Jane
    Perez, Laura M.
    Isella, Andrea
    Dullemond, Cornelis P.
    Kurtovic, Nicolas T.
    Guzman, Viviana V.
    Carpenter, John M.
    Wilner, David J.
    Zhang, Shangjia
    Zhu, Zhaohuan
    Birnstiel, Tilman
    Bai, Xue-Ning
    Benisty, Myriam
    Hughes, A. Meredith
    Oberg, Karin I.
    Ricci, Luca
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2018, 869 (02)
  • [2] Mercury and other iron-rich planetary bodies as relics of inefficient accretion
    Asphaug, E.
    Reufer, A.
    [J]. NATURE GEOSCIENCE, 2014, 7 (08) : 564 - 568
  • [3] Self-consistent model for dust-gas coupling in protoplanetary disks
    Batygin, Konstantin
    Morbidelli, Alessandro
    [J]. ASTRONOMY & ASTROPHYSICS, 2022, 666
  • [4] COLLISIONAL STRIPPING OF MERCURYS MANTLE
    BENZ, W
    SLATTERY, WL
    CAMERON, AGW
    [J]. ICARUS, 1988, 74 (03) : 516 - 528
  • [5] Using the density of Kuiper Belt Objects to constrain their composition and formation history
    Bierson, C. J.
    Nimmo, F.
    [J]. ICARUS, 2019, 326 : 10 - 17
  • [6] Dust retention in protoplanetary disks
    Birnstiel, T.
    Dullemond, C. P.
    Brauer, F.
    [J]. ASTRONOMY & ASTROPHYSICS, 2009, 503 (01) : L5 - L8
  • [7] The structure of protoplanetary discs around evolving young stars
    Bitsch, Bertram
    Johansen, Anders
    Lambrechts, Michiel
    Morbidelli, Alessandro
    [J]. ASTRONOMY & ASTROPHYSICS, 2015, 575
  • [8] EXPERIMENTAL INVESTIGATIONS ON AGGREGATE AGGREGATE COLLISIONS IN THE EARLY SOLAR NEBULA
    BLUM, J
    MUNCH, M
    [J]. ICARUS, 1993, 106 (01) : 151 - 167
  • [9] The partitioning of the inner and outer Solar System by a structured protoplanetary disk
    Brasser, R.
    Mojzsis, S. J.
    [J]. NATURE ASTRONOMY, 2020, 4 (05) : 492 - +
  • [10] How planets grow by pebble accretion II. Analytical calculations on the evolution of polluted envelopes
    Brouwers, M. G.
    Ormel, C. W.
    [J]. ASTRONOMY & ASTROPHYSICS, 2020, 634