The relationship between the group delay and envelope delay of a narrow-band dispersive system

被引:0
作者
Wang, Jian-Wu [1 ,2 ]
Feng, Zheng-He [1 ]
机构
[1] Department of Electronic Engineering, Tsinghua University, Beijing
[2] Second Department, Air-force Air-Born Academy, Guilin
来源
Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology | 2014年 / 36卷 / 12期
关键词
Correlation delay; Dispersion; Filter; Group delay; Signal processing;
D O I
10.3724/SP.J.1146.2014.00008
中图分类号
学科分类号
摘要
In this paper, the relationship between the group delay and correlation delay is discussed, and the influence of dispersion on the calibration of a system is analyzed, when a modulated signal passes through a dispersive narrow-band system. The envelope delay of a modulated signal is caused by the distortion of its rising and falling edges when it passes through a system. The researches on the modulated signals, including the rectangular pulse modulation, triangular pulse modulation, cosine pulse modulation and chirp modulation, show that the correlation delay is different from the group delay of the system at the point of the carrier frequency. The correlation delay is approximate to the weighted average of the group delay, and the weighting factor is the product of the spectrum of the signal and the amplitude response of the system. When the group delay is used to calibrate the correlation delay, the linearity of the phase response of the system becomes better, the calibration is higher. ©, 2014, Science Press. All right reserved.
引用
收藏
页码:3042 / 3045
页数:3
相关论文
共 19 条
  • [1] Li Y.-Y., Research on time delay estimation technologies for extremely weak signal in multipath environments, (2009)
  • [2] Zhang G.-B., Study on parameter estimation algorithms for bi/multi-static radar, (2006)
  • [3] Wang Z., Luo J.-A., Zhang X.-P., A novel location-penalized maximum likelihood estimator for bearing-only target localization, IEEE Transactions on Signal Processing, 60, 12, pp. 6166-6181, (2012)
  • [4] Viola F., Walker W.F., A spline-based algorithm for continuous time-delay estimation using sampled data, IEEE Transactions on Ultrasonic's, Ferroelectrics and Frequeney Control, 52, 1, pp. 80-93, (2005)
  • [5] Hayvaci H.T., Setlur P., Devroye N., Et al., Maximum likelihood time delay estimation and Cramér-Rao bounds for multipath exploitation, Proceedings of 2012 IEEE Radar Conference (RADAR), pp. 764-768, (2012)
  • [6] Masmoudi A., Bellili F., Sofiene A., A maximum likelihood time delay estimator in a multipath environment using importance sampling, IEEE Transactions on Signal Processing, 61, 1, pp. 182-193, (2013)
  • [7] Fang X., Yang C.-C., Zhang F., Time-domain maximum-likelihood channel estimation for PDM CO-OFDM systems, IEEE Photonics Technology Letters, 25, 6, pp. 619-622, (2013)
  • [8] Zhu F., Li X.-H., Wang G.-Y., Analysis of the filter group delay and its impact on navigation signal, Electronic Measurement Technology, 36, 5, pp. 54-57, (2013)
  • [9] Liu T., Fast method of group delay measurement, Chinese Journal of Radio Science, 24, 2, pp. 369-371, (2009)
  • [10] Zhu X.-W., Li Y.-L., Yong S.-W., Et al., A novel definition and measurement method of group delay and its application, IEEE Transactions on Instrumentation and Measurement, 58, 1, pp. 229-233, (2009)