Unlocking high-performance near-infrared photodetection: polaron-assisted organic integer charge transfer hybrids

被引:0
作者
Iqbal, Muhammad Ahsan [1 ,2 ,3 ,4 ]
Fang, Xueqian [1 ,2 ,3 ]
Abbas, Yasir [5 ]
Weng, Xiaoliang [4 ]
He, Tingchao [4 ]
Zeng, Yu-Jia [4 ]
机构
[1] Dongguan Univ Technol, Sch Environm & Civil Engn, Dongguan 523808, Peoples R China
[2] Dongguan Univ Technol, Guangdong Prov Key Lab Intelligent Disaster Preven, Dongguan 523808, Peoples R China
[3] Tianjin Univ, Dept Mech, Tianjin 300350, Peoples R China
[4] Shenzhen Univ, Coll Phys & Optoelect Engn, Shenzhen Key Lab Laser Engn, Key Lab Optoelect Devices & Syst,Minist Educ & Gua, Shenzhen 518060, Peoples R China
[5] Dongguan Univ Technol, Sch Mech Engn, Dongguan 523808, Peoples R China
基金
中国国家自然科学基金;
关键词
BROAD-BAND; EFFICIENT; HETEROJUNCTION; DESIGN; ORIGIN; NOISE;
D O I
10.1038/s41377-024-01695-9
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Room temperature femtowatt sensitivity remains a sought-after attribute, even among commercial inorganic infrared (IR) photodetectors (PDs). While organic IR PDs are poised to emerge as a pivotal sensor technology in the forthcoming Fourth-Generation Industrial Era, their performance lags behind that of their inorganic counterparts. This discrepancy primarily stems from poor external quantum efficiencies (EQE), driven by inadequate exciton dissociation (high exciton binding energy) within organic IR materials, exacerbated by pronounced non-radiative recombination at narrow bandgaps. Here, we unveil a high-performance organic Near-IR (NIR) PD via integer charge transfer between Poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] (C-14PBTTT) donor (D) and Tetrafluorotetracyanoquinodimethane (TCNQF4) acceptor (A) molecules, showcasing strong low-energy subgap absorptions up to 2.5 mu m. We observe that specifically, polaron excitation in these radical and neutral D-A blended molecules enables bound charges to exceed the Coulombic attraction to their counterions, leading to an elevated EQE (polaron absorption region) compared to Frenkel excitons. As a result, our devices achieve a high EQE of similar to 10(7)%, femtowatt sensitivity (NEP) of similar to 0.12 fW Hz(-1/2) along a response time of similar to 81 ms, at room temperature for a wavelength of 1.0 mu m. Our innovative utilization of polarons highlights their potential as alternatives to Frenkel excitons in high-performance organic IR PDs.
引用
收藏
页数:12
相关论文
共 44 条
[1]   Cocrystal engineering: towards high-performance near-infrared organic phototransistors based on donor-acceptor charge transfer cocrystals [J].
Li, Fei ;
Zheng, Lei ;
Sun, Yajing ;
Li, Shuyu ;
Sun, Lingjie ;
Yang, Fangxu ;
Dong, Weibing ;
Zhang, Xiaotao ;
Hu, Wenping .
SCIENCE CHINA-CHEMISTRY, 2023, 66 (01) :266-272
[2]   High-performance near-infrared narrowband circularly polarized light organic photodetectors [J].
Wang, Qingkai ;
Bao, Jinying ;
Liu, Lixuan ;
Yang, Yang ;
Yang, Jiaxin ;
Gao, Hanfei ;
Liu, Tianhua ;
Dong, Huanli ;
Wu, Yuchen ;
Zhang, Yajie ;
Yang, Huai ;
Wei, Zhixiang .
NANO TODAY, 2024, 54
[3]   A High-Performance Solution-Processed Organic Photodetector for Near-Infrared Sensing [J].
Huang, Jianfei ;
Lee, Jaewon ;
Vollbrecht, Joachim ;
Brus, Viktor V. ;
Dixon, Alana L. ;
Cao, David Xi ;
Zhu, Ziyue ;
Du, Zhifang ;
Wang, Hengbin ;
Cho, Kilwon ;
Bazan, Guillermo C. ;
Thuc-Quyen Nguyen .
ADVANCED MATERIALS, 2020, 32 (01)
[4]   High-performance integrated perovskite and organic solar cells with efficient near-infrared harvesting [J].
Kim, Junghwan ;
Lee, Kwanghee .
ORGANIC PHOTOVOLTAICS XVII, 2016, 9942
[5]   Semiconductor plasmon enhanced monolayer upconversion nanoparticles for high performance narrowband near-infrared photodetection [J].
Ji, Yanan ;
Xu, Wen ;
Li, Dongyu ;
Zhou, Donglei ;
Chen, Xu ;
Ding, Nan ;
Li, Jing ;
Wang, Nan ;
Bai, Xue ;
Song, Hongwei .
NANO ENERGY, 2019, 61 :211-220
[6]   Suppressed Trap Density and Reduced Energy Disorder for High-Performance Ultrathin Organic Near-Infrared Photodetectors [J].
Li, Xuewu ;
Qiao, Jiawei ;
Zhou, Mingxu ;
Shi, Xue ;
Ge, Yufeng ;
Fu, Zhen ;
Hao, Xiaotao .
ADVANCED OPTICAL MATERIALS, 2025, 13 (15)
[7]   High-Performance Integrated Perovskite and Organic Solar Cells with Enhanced Fill Factors and Near-Infrared Harvesting [J].
Kim, Junghwan ;
Kim, Geunjin ;
Back, Hyungcheol ;
Kong, Jaemin ;
Hwang, In-Wook ;
Kim, Tae Kyun ;
Kwon, Sooncheol ;
Lee, Jong-Hoon ;
Lee, Jinho ;
Yu, Kilho ;
Lee, Chang-Lyoul ;
Kang, Hongkyu ;
Lee, Kwanghee .
ADVANCED MATERIALS, 2016, 28 (16) :3159-3165
[8]   Mechanochemistry toward Organic "Salt" via Integer-Charge-Transfer Cocrystal Strategy for Rapid, Efficient, and Scalable Near-Infrared Photothermal Conversion [J].
Chen, Shun-Li ;
Zhang, Meng-Meng ;
Chen, Jiecheng ;
Wen, Xinyi ;
Chen, Wenbin ;
Li, Jiayu ;
Chen, Ye-Tao ;
Xiao, Yonghong ;
Liu, Huifen ;
Tan, Qianqian ;
Zhu, Tangjun ;
Ye, Bowei ;
Yan, Jiajun ;
Huang, Yihang ;
Li, Jie ;
Ni, Shaofei ;
Dang, Li ;
Li, Ming-De .
CHEMSUSCHEM, 2023, 16 (14)
[9]   Tuning Electronic and Morphological Properties for High-Performance Wavelength-Selective Organic Near-Infrared Cavity Photodetectors [J].
Vanderspikken, Jochen ;
Liu, Quan ;
Liu, Zhen ;
Vandermeeren, Tom ;
Cardeynaels, Tom ;
Gielen, Sam ;
Van Mele, Bruno ;
Van den Brande, Niko ;
Champagne, Benoit ;
Vandewal, Koen ;
Maes, Wouter .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (09)
[10]   High-Performance Near-Infrared Phototransistor Based on n-Type Small-Molecular Organic Semiconductor [J].
Li, Feng ;
Chen, Yin ;
Ma, Chun ;
Buttner, Ulrich ;
Leo, Karl ;
Wu, Tom .
ADVANCED ELECTRONIC MATERIALS, 2017, 3 (01)