Interactive AI With Retrieval-Augmented Generation for Next Generation Networking

被引:19
作者
Zhang, Ruichen [1 ]
Du, Hongyang [1 ]
Liu, Yinqiu [1 ]
Niyato, Dusit [1 ]
Kang, Jiawen [2 ]
Sun, Sumei [3 ]
Shen, Xuemin [4 ]
Poor, H. Vincent [5 ]
机构
[1] Nanyang Technol Univ, Coll Comp & Data Sci, Singapore 639798, Singapore
[2] Guangdong Univ Technol, Sch Automat, Guangzhou 523083, Peoples R China
[3] Agcy Sci Technol & Res, Inst Infocomm Res, Fusionopolis 138632, Singapore
[4] Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON N2L 3G1, Canada
[5] Princeton Univ, Dept Elect & Comp Engn, Princeton, NJ 08544 USA
来源
IEEE NETWORK | 2024年 / 38卷 / 06期
基金
中国国家自然科学基金; 新加坡国家研究基金会; 美国国家科学基金会;
关键词
Artificial intelligence; Data models; Optimization; Task analysis; Heuristic algorithms; Predictive models; Prediction algorithms; IAI; networking; pluggable LLM module; AGI; RAG; problem formulation;
D O I
10.1109/MNET.2024.3401159
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
With the advance of artificial intelligence (AI), the concept of interactive AI (IAI) has been introduced, which can interactively understand and respond not only to human user input but also to dynamic system and network conditions. In this article, we explore an integration and enhancement of IAI in networking. We first review recent developments and future perspectives of AI and then introduce the technology and components of IAI. We then explore the integration of IAI into next-generation networks, focusing on how implicit and explicit interactions can enhance network functionality, improve user experience, and promote efficient network management. Subsequently, we propose an IAI-enabled network management and optimization framework, which consists of environment, perception, action, and brain units. We also design a pluggable large language model (LLM) module and retrieval augmented generation (RAG) module to build the knowledge base and contextual memory for decision-making in the brain unit. We demonstrate through case studies that our IAI framework can effectively perform optimization problem design. Finally, we discuss potential research directions for IAI-based networks.
引用
收藏
页码:414 / 424
页数:11
相关论文
共 15 条
[1]   Learning Graph Structures With Transformer for Multivariate Time-Series Anomaly Detection in IoT [J].
Chen, Zekai ;
Chen, Dingshuo ;
Zhang, Xiao ;
Yuan, Zixuan ;
Cheng, Xiuzhen .
IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (12) :9179-9189
[2]  
Chen ZR, 2024, Arxiv, DOI arXiv:2311.02684
[3]  
Dhole KD, 2023, Arxiv, DOI arXiv:2311.11226
[4]  
Du H., 2023, arXiv
[5]  
Lewis P, 2020, ADV NEUR IN, V33
[6]   A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects [J].
Li, Zewen ;
Liu, Fan ;
Yang, Wenjie ;
Peng, Shouheng ;
Zhou, Jun .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (12) :6999-7019
[7]   Artificial intelligence: a survey on evolution, models, applications and future trends [J].
Lu, Yang .
JOURNAL OF MANAGEMENT ANALYTICS, 2019, 6 (01) :1-29
[8]   Where to Hide a Stolen Elephant: Leaps in Creative Writing with Multimodal Machine Intelligence [J].
Singh, Nikhil ;
Bernal, Guillermo ;
Savchenko, Daria ;
Glassman, Elena L. .
ACM TRANSACTIONS ON COMPUTER-HUMAN INTERACTION, 2023, 30 (05)
[9]   Automatic Steganographic Distortion Learning Using a Generative Adversarial Network [J].
Tang, Weixuan ;
Tan, Shunquan ;
Li, Bin ;
Huang, Jiwu .
IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (10) :1547-1551
[10]  
Wang CJ, 2023, Arxiv, DOI arXiv:2309.06342