Investigation of long-range plasmonic field effects in Au@SiO2 nanostructures using p-nitrophenol reduction

被引:1
作者
Zhang, Gude [1 ]
Wu, Xin [2 ]
Yu, Shijin [1 ]
Feng, Yuhui [3 ]
Xu, Xiangqing [1 ]
Cui, Chunzhi [1 ]
机构
[1] Yanbian Univ, Natl Demonstrat Ctr Expt Chem Educ, Dept Chem, Jilin 133002, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Coll Phys, Nanjing 210016, Peoples R China
[3] Jilin Tobacco Ind Co Ltd, Yanji 133001, Peoples R China
基金
中国国家自然科学基金;
关键词
Au nanorod; Core-shell structure; Plasmonic field; Long-range; Photocatalysis; CATALYTIC-REDUCTION; NANOPARTICLES; FRAMEWORK;
D O I
10.1016/j.jallcom.2024.177220
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As an emerging field, plasmonic photocatalysis has gradually garnered attention from researchers. It is generally accepted that localized surface plasmonic resonance (LSPR) in noble metallic nanostructures enhances photo- catalysis through the induction of a long-range plasmonic field. Furthermore, nanostructures in close proximity can enhance the electromagnetic (EM) field via plasmonic coupling, which also contributes to improved photocatalytic activity. In this study, core-shell nanostructures composed of Au nanorods (AuNRs) with pinhole-free SiO2 shells (pf-AuNRs@SiO2) are synthesized as non-contact, long-range photocatalysts. By tuning the aspect ratios (ARs) of the AuNRs to match the LSPR peaks with the wavelength of the irradiation light source, an optimized photocatalytic effect was achieved in the reduction of p-nitrophenol (p-NP). Additionally, by comparing shell thicknesses of 5 nm and 10 nm, it was observed that the 5 nm thickness exhibited superior catalytic efficiency. This enhancement is attributed to the thinner shell allowing reactants to be placed within a stronger plasmonic field.
引用
收藏
页数:8
相关论文
共 39 条
[1]   Crystallinity regulation of ZIF-67 via defective MgO layer made by high voltage-assisted oxidation approach for optimal 4-nitrophenol reduction [J].
Aadil, Mohammad ;
Safira, Ananda Repycha ;
Kaseem, Mosab ;
Fattah-Alhosseini, Arash .
SURFACES AND INTERFACES, 2024, 50
[2]   Understanding the Photothermal and Photocatalytic Mechanism of Polydopamine Coated Gold Nanorods [J].
Aguilar-Ferrer, Daniel ;
Vasileiadis, Thomas ;
Iatsunskyi, Igor ;
Ziolek, Marcin ;
Zebrowska, Klaudia ;
Ivashchenko, Olena ;
Blaszkiewicz, Paulina ;
Grzeskowiak, Bartosz ;
Pazos, Raquel ;
Moya, Sergio ;
Bechelany, Mikhael ;
Coy, Emerson .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (43)
[3]   Gold nanorod synthesis catalysed by Au clusters [J].
Attia, Yasser A. ;
Vazquez-Vazquez, Carlos ;
Carmen Blanco, M. ;
Buceta, David ;
Arturo Lopez-Quintela, M. .
FARADAY DISCUSSIONS, 2016, 191 :205-213
[4]   Nanoscale Control of Optical Heating in Complex Plasmonic Systems [J].
Baffou, Guillaume ;
Quidant, Romain ;
Javier Garcia de Abajo, F. .
ACS NANO, 2010, 4 (02) :709-716
[5]   Tumor-Homing and Immune-Reprogramming Cellular Nanovesicles for Photoacoustic Imaging-Guided Phototriggered Precise Chemoimmunotherapy [J].
Fan, Zhijin ;
Wang, Yichao ;
Li, Lanqing ;
Zeng, Fanchu ;
Shang, Qiuping ;
Liao, Yuhui ;
Liang, Changhong ;
Nie, Liming .
ACS NANO, 2022, 16 (10) :16177-16190
[6]   SPR signals enhancement by gold nanorods for cell surface marker detection [J].
Fathi, Farzaneh ;
Jalili, Roghayeh ;
Amjadi, Mohammad ;
Rashidi, Mohammad-Reza .
BIOIMPACTS, 2019, 9 (02) :71-78
[7]  
Gates BD, 2016, MICROSC MICROANAL, V22, P1086, DOI 10.1017/s1431927616006279
[8]   Gold nanorods and their nanocomposites: Synthesis and recent applications in analytical chemistry [J].
Gorbunova, Maria ;
Apyari, Vladimir ;
Dmitrienko, Stanislava ;
Zolotov, Yury .
TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2020, 130
[9]   Single Molecule Photocatalysis on TiO2 Surfaces [J].
Guo, Qing ;
Ma, Zhibo ;
Zhou, Chuanyao ;
Ren, Zefeng ;
Yang, Xueming .
CHEMICAL REVIEWS, 2019, 119 (20) :11020-11041
[10]   Plasmonic Approach to Fluorescence Enhancement of Mesoporous Silica-Coated Gold Nanorods for Highly Sensitive Influenza A Virus Detection Using Lateral Flow Immunosensor [J].
Hong, Donggu ;
Jo, Eun-Jung ;
Bang, Doyeon ;
Jung, Chaewon ;
Lee, Young Eun ;
Noh, Yu-Seon ;
Shin, Myung Geun ;
Kim, Min-Gon .
ACS NANO, 2023, 17 (17) :16607-16619