Research of TEA CO2 laser with Fox-Smith cavity

被引:0
|
作者
Liang, Zhiqiang [1 ]
Qu, Yanchen [1 ]
Zhao, Weijiang [1 ]
Wang, Yuanhu [1 ]
Ren, Deming [1 ]
Hu, Xiaoyong [1 ]
机构
[1] National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin
来源
Guangxue Xuebao/Acta Optica Sinica | 2009年 / 29卷 / 12期
关键词
Lasers; Single longitudinal mode; TEA CO[!sub]2[!/sub] laser; Tunable;
D O I
10.3788/AOS20092912.3424
中图分类号
学科分类号
摘要
We obtain a stable tunable single-longitudinal-mode (SLM) TEA CO2 laser oscillation by using a Fox-Smith cavity with a Fabry-Pérot etalon inserted in the sub-cavity. A numerical model of the reflectivity of the interference cavity is studied. The influence of the detuned angle and the sub-cavity-matching on the mode-choosing is discussed, and the verification experiment is carried out. Finally we get 140 mJ of SLM output energy at 10.6 μm with repetition frequency of single longitudinal mode as high as 90%, and there is no damage on the elements in the cavity.
引用
收藏
页码:3424 / 3428
页数:4
相关论文
共 16 条
  • [1] Binks D.J., Gloster L.A.W., King T.A., Et al., Frequency locking of a pulsed single-longitudinal-mode laser in a coupled-cavity resonator, Appl. Opt., 36, 36, pp. 9371-9377, (1997)
  • [2] Gross C.T., Kiess J., Keilmann F., Pulsed high-power far-infrared gas lasers: Performance and spectral survey, IEEE J. Quantu. Electron., QE-23, 4, pp. 377-384, (1987)
  • [3] Romanovskii O.A., Applicability of airborne lidars based on middle IR gas lasers for gas analysis of the atmosphere, SPIE, 6594, (2007)
  • [4] Kovar G., Larouche D., Piche M., Et al., Single-longitudinal-mode operation of a TEA CO<sub>2</sub> laser with a modified Fabry-Perot interferometer, Appl. Opt., 24, 21, pp. 3584-3590, (1985)
  • [5] Silakhori K., Behjat A., Soltanmoradi F., Et al., A compact injection locked single longitudinal mode TEA CO<sub>2</sub> laser, SPIE, 5777, pp. 433-437, (2005)
  • [6] Kar A.K., Tratt D.M., Mathew J.H., Et al., Status and prospects of hybrid and injection-locked TEA CO<sub>2</sub> lasers for lidar and nonlinear optics applications, IEEE J. Quant. Electron., QE-21, 4, pp. 359-364, (1985)
  • [7] Kumar A., Nilaya J.P., Biswas D.J., Improved efficiency of a hybrid CO<sub>2</sub> laser as a result of increased TEM<sub>00</sub> mode filling factor, Rev. Sci. Instrum., 75, 12, pp. 5203-5204, (2004)
  • [8] Barnes N.P., Barnes J.C., Injection seeding. I. Theory, IEEE J. Quant. Electron., 29, 10, pp. 2670-2683, (1993)
  • [9] Tochitsky S.Y., Narang R., Filip C., Et al., Generation of 160-ps terawatt-power CO<sub>2</sub> laser pulses, Opt. Lett., 24, pp. 1717-1719, (1999)
  • [10] Palange E., Salvetti G., Control of intrapulse frequency chirping in long-pulse CO<sub>2</sub> lasers employing perturbation-insensitive optical cavities, Appl. Opt., 30, 27, pp. 3832-3841, (1991)