DeepMulticut: Deep Learning of Multicut Problem for Neuron Segmentation From Electron Microscopy Volume

被引:2
作者
Li, Zhenchen [1 ,2 ]
Yang, Xu [3 ,4 ]
Liu, Jiazheng [1 ,2 ]
Hong, Bei [5 ]
Zhang, Yanchao [1 ,2 ]
Zhai, Hao [1 ,2 ]
Shen, Lijun [1 ]
Chen, Xi [1 ]
Liu, Zhiyong [3 ,4 ]
Han, Hua [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Automat, Lab Brain Atlas & Brain Inspired Intelligence, Key Lab Brain Cognit & Brain Inspired Intelligenc, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Future Technol, Beijing 101408, Peoples R China
[3] Chinese Acad Sci, Inst Automat, State Key Lab Multimodal Artificial Intelligence, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
[5] Changping Lab, Beijing 102206, Peoples R China
基金
中国国家自然科学基金;
关键词
Neuron segmentation; electron microscopy (EM); multicut problem; deep learning; superpixel aggregation; graph partitioning; edge contraction; combinatorial optimization; RECONSTRUCTION; CIRCUITS; AFFINITY;
D O I
10.1109/TPAMI.2024.3409634
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Superpixel aggregation is a powerful tool for automated neuron segmentation from electron microscopy (EM) volume. However, existing graph partitioning methods for superpixel aggregation still involve two separate stages-model estimation and model solving, and therefore model error is inherent. To address this issue, we integrate the two stages and propose an end-to-end aggregation framework based on deep learning of the minimum cost multicut problem called DeepMulticut. The core challenge lies in differentiating the NP-hard multicut problem, whose constraint number is exponential in the problem size. With this in mind, we resort to relaxing the combinatorial solver-the greedy additive edge contraction (GAEC)-to a continuous Soft-GAEC algorithm, whose limit is shown to be the vanilla GAEC. Such relaxation thus allows the DeepMulticut to integrate edge cost estimators, Edge-CNNs, into a differentiable multicut optimization system and allows a decision-oriented loss to feed decision quality back to the Edge-CNNs for adaptive discriminative feature learning. Hence, the model estimators, Edge-CNNs, can be trained to improve partitioning decisions directly while beyond the NP-hardness. Also, we explain the rationale behind the DeepMulticut framework from the perspective of bi-level optimization. Extensive experiments on three public EM datasets demonstrate the effectiveness of the proposed DeepMulticut.
引用
收藏
页码:8696 / 8714
页数:19
相关论文
共 86 条
[1]   RAMA: A Rapid Multicut Algorithm on GPU [J].
Abbas, Ahmed ;
Swoboda, Paul .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, :8183-8192
[2]  
ACD BRAIN Initiative Working Group 2.0, 2019, The BRAIN Initiative 2.0: From cells to circuits, toward cures
[3]  
Ahn KJ, 2015, PR MACH LEARN RES, V37, P2237
[4]   Aggregating Inconsistent Information: Ranking and Clustering [J].
Ailon, Nir ;
Charikar, Moses ;
Newman, Alantha .
JOURNAL OF THE ACM, 2008, 55 (05)
[5]  
Amos B, 2017, PR MACH LEARN RES, V70
[6]  
Andres B, 2008, LECT NOTES COMPUT SC, V5096, P142, DOI 10.1007/978-3-540-69321-5_15
[7]  
Andres B, 2012, LECT NOTES COMPUT SC, V7574, P778, DOI 10.1007/978-3-642-33712-3_56
[8]  
[Anonymous], 2012, P 25 INT C NEUR INF
[9]   Crowdsourcing the creation of image segmentation algorithms for connectomics [J].
Arganda-Carreras, Ignacio ;
Turaga, Srinivas C. ;
Berger, Daniel P. ;
Ciresan, Dan ;
Giusti, Alessandro ;
Gambardella, Luca M. ;
Schmidhuber, Juergen ;
Laptev, Dmitry ;
Dwivedi, Sarvesh ;
Buhmann, Joachim M. ;
Liu, Ting ;
Seyedhosseini, Mojtaba ;
Tasdizen, Tolga ;
Kamentsky, Lee ;
Burget, Radim ;
Uher, Vaclav ;
Tan, Xiao ;
Sun, Changming ;
Pham, Tuan D. ;
Bas, Erhan ;
Uzunbas, Mustafa G. ;
Cardona, Albert ;
Schindelin, Johannes ;
Seung, H. Sebastian .
FRONTIERS IN NEUROANATOMY, 2015, 9 :1-13
[10]   GASP, a generalized framework for agglomerative clustering of signed graphs and its application to Instance Segmentation [J].
Bailoni, Alberto ;
Pape, Constantin ;
Hutsch, Nathan ;
Wolf, Steffen ;
Beier, Thorsten ;
Kreshuk, Anna ;
Hamprecht, Fred A. .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, :11635-11645