The Planetary Boundary Layer Height Climatology Over Oceans Using COSMIC-2 and Spire GNSS RO Bending Angles From 2019 to 2023: Comparisons to CALIOP, ERA-5, MERRA2, and CFS Reanalysis

被引:0
作者
Ho, Shu-Peng [1 ]
Gu, Guojun [2 ]
Zhou, Xinjia [2 ]
机构
[1] NOAA, NESDIS, STAR, College Pk, MD 20740 USA
[2] Univ Maryland, Cooperat Inst Satellite Earth Syst Studies CISESS, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20740 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
关键词
Clouds; Signal to noise ratio; Atmospheric measurements; Meteorology; Sea surface; Sea measurements; Extraterrestrial measurements; Atmospheric modeling; Ocean temperature; Global navigation satellite system; Constellation Observing System for Meteorology; Ionosphere; and Climate-2 (COSMIC-2); diurnal cycle; planetary boundary layer height (PBLH); Radio Occultation (RO); seasonal variation; Spire; WATER-VAPOR; OCCULTATION; CEILOMETER; LIDAR;
D O I
10.1109/TGRS.2024.3503418
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The bending angle (BA) vertical profiles from two recent Global Navigation Satellite System (GNSS) Radio Occultation (RO) missions, Formosa Satellite Mission 7-Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (COSMIC-2) and Spire, are used to detect the planetary boundary layer height (PBLH) over global oceans. While COSMIC-2 is mainly distributed from 45 degrees N to 45 degrees S with relatively uniform temporal distribution, Spire RO profiles cover the global but focus on 2-3, 9-10, 14-15, and 21-22 local time. We compared the RO PBLH to the height of the boundary-layer-cloud-top (BLCTH), derived from the lidar measurements taken by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument at regions with stratocumulus clouds over oceans. The remarkable consistency and strong correlation between RO PBLH and BLCTH estimations over tropical-subtropical oceans confirm the RO PBLH accuracy. These results also demonstrate the consistency between Spire and COSMIC-2 PBLH. We further compared the RO PBLH with the PBLH outputs from the European Centre for Medium-Range Weather Forecasts (ECMWFs) Atmospheric Reanalysis Version 5 (ERA-5), Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), and National Center of Environmental Prediction (NCEP)-Climate Forecast System (CFS). Consistent PBLH patterns from ERA-5, MERRA-2, and CFS with those from RO showed that the RO PBLH has substantial seasonal variation over various ocean basins, reflecting evident seasonal evolution within the coupled atmosphere-ocean system. Longitudinal RO PBLH variations are prominent in the southeastern Pacific region, indicating that PBLH is sensitive to surface temperature and large-scale circulations in the mid-upper troposphere. We also converted ERA-5 thermal profiles into BA profiles. The minimum gradient (MG) method used in RO PBLH detection is also applied to the ERA-5 BA profiles to derive the ERA-5 (MGBA) PBLH. The RO PBLH is highly consistent with the ERA-5 (MGBA) PBLH, while the latter is about 100 m lower.
引用
收藏
页数:14
相关论文
共 46 条
  • [31] A Comparison of Atmospheric Boundary Layer Height Determination Methods Using GNSS Radio Occultation Data
    Qiu, Cong
    Wang, Xiaoming
    Li, Haobo
    Zhou, Kai
    Zhang, Jinglei
    Li, Zhe
    Liu, Dingyi
    Yuan, Hong
    [J]. ATMOSPHERE, 2023, 14 (11)
  • [32] The NCEP Climate Forecast System Version 2
    Saha, Suranjana
    Moorthi, Shrinivas
    Wu, Xingren
    Wang, Jiande
    Nadiga, Sudhir
    Tripp, Patrick
    Behringer, David
    Hou, Yu-Tai
    Chuang, Hui-Ya
    Iredell, Mark
    Ek, Michael
    Meng, Jesse
    Yang, Rongqian
    Mendez, Malaquias Pena
    Van Den Dool, Huug
    Zhang, Qin
    Wang, Wanqiu
    Chen, Mingyue
    Becker, Emily
    [J]. JOURNAL OF CLIMATE, 2014, 27 (06) : 2185 - 2208
  • [33] COSMIC-2 Radio Occultation Constellation: First Results
    Schreiner, W. S.
    Weiss, J. P.
    Anthes, R. A.
    Braun, J.
    Chu, V
    Fong, J.
    Hunt, D.
    Kuo, Y-H
    Meehan, T.
    Serafino, W.
    Sjoberg, J.
    Sokolovskiy, S.
    Talaat, E.
    Wee, T-K
    Zeng, Z.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (04)
  • [34] Mixing-layer height retrieval with ceilometer and Doppler lidar: from case studies to long-term assessment
    Schween, J. H.
    Hirsikko, A.
    Loehnert, U.
    Crewell, S.
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2014, 7 (11) : 3685 - 3704
  • [35] Review and intercomparison of operational methods for the determination of the mixing height
    Seibert, P
    Beyrich, F
    Gryning, SE
    Joffre, S
    Rasmussen, A
    Tercier, P
    [J]. ATMOSPHERIC ENVIRONMENT, 2000, 34 (07) : 1001 - 1027
  • [36] Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis
    Seidel, Dian J.
    Ao, Chi O.
    Li, Kun
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2010, 115
  • [37] 3-D water vapor field in the atmospheric boundary layer observed with scanning differential absorption lidar
    Spaeth, Florian
    Behrendt, Andreas
    Muppa, Shravan Kumar
    Metzendorf, Simon
    Riede, Andrea
    Wulfmeyer, Volker
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2016, 9 (04) : 1701 - 1720
  • [38] A Methodology for Estimating the Energy and Moisture Budget of the Convective Boundary Layer Using Continuous Ground-Based Infrared Spectrometer Observations
    Wakefield, R. A.
    Turner, D. D.
    Rosenberger, T.
    Heus, T.
    Wagner, T. J.
    Santanello, J.
    Basara, J.
    [J]. JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2023, 62 (07) : 901 - 914
  • [39] Estimation of atmospheric mixing layer height from radiosonde
    Wang, X. Y.
    Wang, K. C.
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2014, 7 (06) : 1701 - 1709
  • [40] Initial performance assessment of CALIOP
    Winker, David M.
    Hunt, William H.
    McGill, Matthew J.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (19)