The novel bridged nucleic-acid analogue 2′,4′-BNANC (2′-O,4′-C-aminomethylene bridged nucleic acid), containing a six-membered bridged structure with an N-O linkage, was designed and synthesized efficiently, demonstrating a one-pot intramolecular NC bond-forming key reaction to construct a perhydro-1,2-oxazine ring (11 and 12). Three monomers of 2′,4′-BNANC (2′,4′-BNANC[NH], [NMe], and [NBn]) were synthesized and incorporated into oligonucleotides, and their properties were investigated and compared with those of 2′,4′-BNA (LNA)-modified oligonucleotides. Compared to 2′,4′-BNA (LNA)-modified oligonucleotides, 2′,4′- BNANC congeners were found to possess: (i) equal or higher binding affinity against an RNA complement with excellent single-mismatch discriminating power, (ii) much better RNA selective binding, (iii) stronger and more sequence selective triplex-forming characters, and (iv) immensely higher nuclease resistance, even higher than the Sp-phosphorthioate analogue. 2′,4′-BNANC-modified oligonucleotides with these excellent profiles show great promise for applications in antisense and antigene technologies. © 2008 American Chemical Society;