An efficient FPGA IP core for automatic modulation classification

被引:10
作者
Cardoso, Claudomir [1 ]
Castro, Adalbery R. [1 ]
Klautau, Aldebaro [1 ]
机构
[1] Signal Processing Laboratory (LaPS), Federal University of Para (UFPA), Belem, Para
关键词
Field-programmable gate array (FPGA); Intellectual property (IP) core; Modulation classification;
D O I
10.1109/LES.2013.2274793
中图分类号
学科分类号
摘要
This letter presents a new algorithm for automatic modulation classification (AMC) and its implementation and validation as an intellectual property (IP) core. AMC aims at accurately identifying the modulation scheme of a given communication system in a short period of time. The proposed IP core consists of a multiclass classifier composed by linear support vector machines and a new parameter extraction (front end) based on histograms. Based on its VHDL implementation and validation using FPGAs, the performance of the proposed system is compared with respect to accuracy and computational complexity to recently proposed AMC algorithms. The new AMC system does not require multipliers and achieves equivalent accuracy with respect to a baseline, while reducing by 50% and 90% the use of logic elements and memory, respectively. © 2009-2012 IEEE.
引用
收藏
页码:42 / 45
页数:3
相关论文
共 19 条
  • [1] Haykin S., Cognitive radio: Brain-empowered wireless communications, IEEE J. Sel. Areas Commun., 23, 2, pp. 144-150, (2005)
  • [2] Petrova M., Mahonen P., Osuna A., Multi-class classification of analog and digital signals in cognitive radios using support vector machines, Proc. IEEE Wireless Commun. Syst, pp. 986-990, (2010)
  • [3] Celebi M., Celebi H., Arslan H., Qaraqe K., Spectrum sensing testbed design for cognitive radio applications, Sign. Proces. Commun. Appl., pp. 446-449, (2011)
  • [4] Dobre O., Abdi A., Bar-Ness Y., Su W., Survey of automatic modulation classification techniques: Classical approaches and new trends, IET Commun., 1, 2, pp. 137-156, (2007)
  • [5] Muller F., Cardoso C., Klautau A., A front end for discriminative learning in automatic modulation classification, IEEE Commun. Lett., 15, 4, pp. 443-445, (2011)
  • [6] Su W., Xu J., Zhou M., Real-time modulation classification based on maximum likelihood, IEEE Commun. Lett., 12, pp. 801-803, (2008)
  • [7] Xu J.L., Su W., Zhou M., Software-defined radio equipped with rapid modulation recognition, IEEE Trans. Veh. Technol., 59, 4, pp. 1659-1667, (2010)
  • [8] Tkachenko A., Cabric D., Brodersen R., Cyclostationary feature detector experiments using reconfigurable BEE2, Proc. IEEE Int. Symp. Dyn. Spectr. Access Netw., pp. 216-219, (2007)
  • [9] Vapnik V., The Nature of Statistical Learning Theory, (1995)
  • [10] Vural M., Kiziloz C., Turgay E., FPGA based real-time efficient histogram equalization, Proc. IEEE Sign. Proces. Commun. Appl. Conf, pp. 49-52, (2009)