共 8 条
[1]
Knorr E., Ng R., Algorithms for mining distance-based outliers in large data sets, Proc. of the VLDB Conf, pp. 392-403, (1998)
[2]
Knorr E., Ng R., Finding intensional knowledge of distance-based outliers, Proc. of the VLDB Conf., pp. 211-222, (1999)
[3]
Ramaswamy S., Rastogi R., Shim K., Efficient algorithms for mining outliers from large data sets, Proc. of the ACM SIGMOD Conf., pp. 427-438, (2000)
[4]
Breunig M.M., Kriegel H.P., Ng R., Sander J., LOF: Identifying density-based local outliers, Proc. of the ACM SIGMOD Conf., pp. 94-104, (2000)
[5]
Arning A., Agrawal R., Raghavan P., A linear method for deviation detection in large databases, Proc. of the KDD Conf., pp. 164-169, (1996)
[6]
Beckmann N., Kriegel H.P., Schneider R., Seeger B., The R*-tree: An efficient and robust access method for points and rectangles, Proc. of the ACM SIGMOD Conf., pp. 322-331, (1990)
[7]
Katayama N., Satoh S., The SR-tree: An index structure for high-dimensional nearest neighbor queries, Proc. of the ACM SIGMOD Conf., pp. 369-380, (1997)
[8]
Berchtold S., Keim D.A., Kriegel H., An index structure for high-dimensional data, Proc. of the 22nd VLDB Conf., pp. 28-39, (1996)