Review of machine learning applications for defect detection in composite materials

被引:5
作者
Daghigh, Vahid [1 ]
Daghigh, Hamid [2 ]
Lacy Jr, Thomas E. [3 ]
Naraghi, Mohammad [1 ]
机构
[1] Texas A&M Univ, Dept Aerosp Engn, College Stn, TX 77840 USA
[2] Univ British Columbia, Sch Engn, Vancouver, BC, Canada
[3] Texas A&M Univ, Dept Mech Engn, College Stn, TX USA
来源
MACHINE LEARNING WITH APPLICATIONS | 2024年 / 18卷
关键词
Machine learning; Composite materials; Defect; Damage; Deep learning; FIBER-REINFORCED COMPOSITE; ACOUSTIC-EMISSION SIGNALS; NEURAL-NETWORKS; DAMAGE CHARACTERIZATION; WAVELET TRANSFORM; FAILURE; IDENTIFICATION; PREDICTION; MECHANISMS; CLASSIFICATION;
D O I
10.1016/j.mlwa.2024.100600
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Machine learning (ML) techniques have shown promising applications in a broad range of topics in engineering, composite materials behavior analysis, and manufacturing. This paper reviews successful ML implementations for defect and damage identification and progression in composites. The focus is on predicting composites' responses under specific loads and environments and optimizing setting and imperfection sensitivity. Discussions and recommendations toward promising ML implementation practices for fruitful interpretable results in the composites' analysis are provided.
引用
收藏
页数:18
相关论文
共 121 条
[1]   Machine learning applications in epilepsy [J].
Abbasi, Bardia ;
Goldenholz, Daniel M. .
EPILEPSIA, 2019, 60 (10) :2037-2047
[2]   Meshless physics-informed deep learning method for three-dimensional solid mechanics [J].
Abueidda, Diab W. ;
Lu, Qiyue ;
Koric, Seid .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2021, 122 (23) :7182-7201
[3]   k-Means plus plus under approximation stability [J].
Agarwal, Manu ;
Jaiswal, Ragesh ;
Pal, Arindam .
THEORETICAL COMPUTER SCIENCE, 2015, 588 :37-51
[4]   Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research [J].
Agatonovic-Kustrin, S ;
Beresford, R .
JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 2000, 22 (05) :717-727
[5]   Acoustic Emission as a Tool for Damage Identification and Characterization in Glass Reinforced Cross Ply Laminates [J].
Aggelis, D. G. ;
Barkoula, N-M ;
Matikas, T. E. ;
Paipetis, A. S. .
APPLIED COMPOSITE MATERIALS, 2013, 20 (04) :489-503
[6]   Acoustic emission analysis of fiber-reinforced composite in flexural testing [J].
Alander, P ;
Lassila, LVJ ;
Tezvergil, A ;
Vallittu, PK .
DENTAL MATERIALS, 2004, 20 (04) :305-312
[7]   Acoustic emission wavelet transform on adhesively bonded single-lap joints of composite laminate during tensile test [J].
Bak, K. Mohamed ;
KalaiChelvan, K. ;
Vijayaraghavan, G. K. ;
Sridhar, B. T. N. .
JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2013, 32 (02) :87-95
[8]  
Baker N., 2019, WORKSH REP BAS RES N, DOI [10.2172/1484362, DOI 10.2172/1484362]
[9]   Acoustic emission waveform analysis in CFRP under Mode I test [J].
Barile, C. ;
Casavola, C. ;
Pappalettera, G. .
ENGINEERING FRACTURE MECHANICS, 2019, 210 :408-413
[10]   Prediction of wind pressure coefficients on building surfaces using artificial neural networks [J].
Bre, Facundo ;
Gimenez, Juan M. ;
Fachinotti, Victor D. .
ENERGY AND BUILDINGS, 2018, 158 :1429-1441