The robustness optimization of parameter estimation in chaotic control systems

被引:0
作者
Xu, Zhen [1 ]
机构
[1] Institute of Information Technology, Zhejiang Shuren University, Hangzhou, Zhejiang
关键词
Chaotic control system; Double mapping constraint; Evolutionary state identification; Genetic operator optimization; Nonlinear decrease; Parameter estimation; Particle swarm optimization algorithm;
D O I
10.25103/jestr.082.09
中图分类号
学科分类号
摘要
Standard particle swarm optimization algorithm has problems of bad adaption and weak robustness in the parameter estimation model of chaotic control systems. In light of this situation, this paper puts forward a new estimation model based on improved particle swarm optimization algorithm. It firstly constrains the search space of the population with Tent and Logistic double mapping to regulate the initialized population size, optimizes the fitness value by evolutionary state identification strategy so as to avoid its premature convergence, optimizes the inertia weight by the nonlinear decrease strategy to reach better global and local optimal solution, and then optimizes the iteration of particle swarm optimization algorithm with the hybridization concept from genetic algorithm. Finally, this paper applies it into the parameter estimation of chaotic systems control. Simulation results show that the proposed parameter estimation model shows higher accuracy, anti-noise ability and robustness compared with the model based on standard particle swarm optimization algorithm. © 2015 Kavala Institute of Technology.
引用
收藏
页码:61 / 67
页数:6
相关论文
共 20 条
[1]  
Lezhu L., A chaotic secure communications method based on chaotic systems partial series parameter estimation, Acta Phys. Sin, pp. 24-29, (2014)
[2]  
Liu W., Evolutionary modelling for parameter estimation for chaotic system, Acta Phys. Sin, pp. 447-456, (2014)
[3]  
Jianhong H., Synchronization of uncertain chaotic systems and parameters identification, Journal of Hebei Normal Univeristy, pp. 30-35, (2014)
[4]  
Longlong H., Chaos control of permanent magnet synchronous motor with parameter uncertainties based on adaptive sliding mode, Modular Machine Tool & Automatic Manufacturing Technique, pp. 55-57, (2013)
[5]  
Honggang D., Synchronization and chaos control of a chaotic complex system, Journal of Sichuan University (Natural Science Edition), pp. 1049-1052, (2013)
[6]  
Zhongyong C., Parameter estimation and noise filter in chaotic measurement, Acta Metrologica Sinica, pp. 497-501, (2013)
[7]  
Chenggang X., Computation of chaotic oscillation parameter in ship power system based on RHR algorithm, Ship Science and Technology, pp. 86-90, (2014)
[8]  
Kunhua L., Adaptive synchronization of fractional order LV chaotic system with uncertain parameters, Journal of Lanzhou University of Technology, pp. 164-167, (2013)
[9]  
Jun D., Function projective synchronization and parameter identification of different fractional-order Hyper-chaotic systems, Journal of Electronics & Information Technology, pp. 1371-1375, (2013)
[10]  
Zhihua G., Generalized function lag projective synchronization and parameter identification of a class of chaotic systems with fully uncertain parameters, Journal of Henan University (Natural Science), pp. 311-314, (2013)