Molded Nanoporous Ni Catalysts with High Active Metal Utilization for CO2 Methanation

被引:0
作者
Liu, Tianyuan [1 ]
Li, Hong [1 ]
Chen, Haozhe [1 ]
Xiao, Zihui [1 ]
Ding, Yi [1 ]
机构
[1] Tianjin Univ Technol, Inst New Energy Mat & Low Carbon Technol, Sch Mat Sci & Engn, Tianjin Key Lab Adv Funct Porous Mat, Tianjin 300384, Peoples R China
来源
ACS SUSTAINABLE CHEMISTRY & ENGINEERING | 2024年
基金
中国国家自然科学基金;
关键词
nanoporous Ni; molded catalysts; CO2; methanation; active metal utilization; fix-bedcatalysts; RANEY-NICKEL; HYDROGENATION; PERFORMANCE;
D O I
10.1021/acssuschemeng.4c07453
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanoporous nickel (NP Ni) catalysts are widely used in the catalytic industry, especially in various unsaturated organic compounds hydrogenation. However, the compatibility of traditional powdered NP Ni catalysts is limited to slurry bed reactors, which hinders their potential applications and the range of reaction systems. Thus, the design of molded NP Ni catalysts to fit various reactors, such as fixed-bed reactors, has garnered increased attention. Herein, a novel alumina-loaded NP Ni molded catalyst (NP Ni@Al<INF>2</INF>O<INF>3</INF>) was designed and prepared by sequential coating and dealloying processes, specifically optimized for fixed-bed reactors. The obtained NP Ni@Al<INF>2</INF>O<INF>3</INF> catalyst shows an interlocked core-shell structure; that is, NP Ni is uniformly dispersed across the porous surface of the Al<INF>2</INF>O<INF>3</INF> support. The synthesized NP Ni@Al<INF>2</INF>O<INF>3</INF> catalyst demonstrated superior performance with a CO<INF>2</INF> conversion rate of 71%, a CH<INF>4</INF> selectivity of 99%, and a CO<INF>2</INF> reaction rate of 0.79 mol<INF>CO<INF>2</INF></INF>g<INF>Ni</INF>-1h-1, significantly outperforming commercial catalysts with a rate of 0.026 mol<INF>CO<INF>2</INF></INF>g<INF>Ni</INF>-1h-1. In addition, the catalytic performance of the NP Ni@Al<INF>2</INF>O<INF>3</INF> catalyst remained stable after a 120 h stability test, further demonstrating the catalysts' robustness and potential for long-term applications. The developed catalyst formation method substantially improves the utilization of active metals, exhibiting broad applicability to a range of Raney-type catalysts, thereby rendering it a promising candidate for industrial-scale applications.
引用
收藏
页码:18648 / 18656
页数:9
相关论文
共 43 条
[1]   Realizing synergy between Cu, Ga, and Zr for selective CO2 hydrogenation to methanol [J].
Al Abdulghani, Abdullah J. ;
Turizo-Pinilla, Edgar E. ;
Fabregas-Angulo, Maria J. ;
Hagmann, Ryan H. ;
Ibrahim, Faysal ;
Jansen, Jacob H. ;
Agbi, Theodore O. ;
Bhat, Samiha ;
Sepuveda-Pagan, Miguel ;
Kraimer, Morgan O. ;
Queen, Collin M. ;
Sun, Zhuoran ;
Nikolla, Eranda ;
Pagan-Torres, Yomaira J. ;
Hermans, Ive .
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2024, 355
[2]   Catalytic CO2 valorization into CH4 on Ni-based ceria-zirconia. Reaction mechanism by operando IR spectroscopy [J].
Aldana, P. A. Ussa ;
Ocampo, F. ;
Kobl, K. ;
Louis, B. ;
Thibault-Starzyk, F. ;
Daturi, M. ;
Bazin, P. ;
Thomas, S. ;
Roger, A. C. .
CATALYSIS TODAY, 2013, 215 :201-207
[3]   Effect of sodium promoters on Ni/Al2O3 catalyst for CO2 hydrogenation: The carbon fixation as carbon nanofiber and reverse-water gas reactions [J].
Chen, Ching-Shiun ;
Chen, Tse-Ching ;
Wu, Hung-Chi ;
Wu, Jia-Huang ;
Pao, Chih-Wen .
CHEMICAL ENGINEERING JOURNAL, 2023, 478
[4]   Optimizing low-temperature CO2 methanation through frustrated Lewis pairs on Ni/CeO2 catalysts [J].
Chen, Xiaohan ;
Ye, Runping ;
Sun, Chunyan ;
Jin, Chengkai ;
Wang, Yuan ;
Arandiyan, Hamidreza ;
Lim, Kang Hui ;
Song, Guoqiang ;
Hu, Feiyang ;
Li, Claudia ;
Lu, Zhang-Hui ;
Feng, Gang ;
Zhang, Rongbin ;
Kawi, Sibudjing .
CHEMICAL ENGINEERING JOURNAL, 2024, 484
[5]   An Active Manganese Promoted Ni/Al2O3 Catalyst for Low Temperature CO2 Methanation [J].
Chen, Yiming ;
Hou, Zhanggui ;
Wang, Chuan ;
Ma, Xin ;
Yang, Hong ;
Wang, Wen ;
Zhou, Ling ;
Zhang, Yi .
CATALYSIS LETTERS, 2024, 154 (03) :943-951
[6]   Elucidating role of alloying in electrocatalytic hydrogenation of benzaldehyde over nanoporous NiPd catalysts [J].
Cheng, Guanhua ;
Zhai, Zhihua ;
Sun, Jiameng ;
Ran, Yunfei ;
Yang, Wanfeng ;
Tan, Fuquan ;
Zhang, Zhonghua .
CHEMICAL ENGINEERING JOURNAL, 2023, 474
[7]   PREPARATION, CHARACTERIZATION, AND PERFORMANCE OF A NOVEL FIXED-BED RANEY CATALYST [J].
CHENG, WC ;
CZARNECKI, LJ ;
PEREIRA, CJ .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1989, 28 (12) :1764-1767
[8]   Tuning of the acid sites in the zeolite-alumina composite Ni catalysts and their impact on the palm oil hydrodeoxygenation reaction [J].
Dabbawala, Aasif A. ;
Al Maksoud, Walid ;
Abou-Hamad, Edy ;
Charisiou, Nikolaos D. ;
Constantinou, Achilleas ;
Harkou, Eleana ;
Latsiou, Angeliki I. ;
Alkhoori, Sara ;
Hinder, Steve J. ;
Baker, Mark A. ;
Anjum, Dalaver H. ;
Kobayashi, Yoji ;
Goula, Maria A. ;
Polychronopoulou, Kyriaki .
CHEMICAL ENGINEERING JOURNAL, 2024, 493
[9]   Metal organic framework derived Ni/CeO2 catalyst with highly dispersed ultra-fine Ni nanoparticles: Impregnation synthesis and the application in CO2 methanation [J].
Feng, Xiaoqian ;
Wang, Kun ;
Zhou, Mingxian ;
Li, Feng ;
Liu, Jing ;
Zhao, Min ;
Zhao, Liping ;
Song, Xuefeng ;
Zhang, Peng ;
Gao, Lian .
CERAMICS INTERNATIONAL, 2021, 47 (09) :12366-12374
[10]   STUDY OF TEXTURE AND STRUCTURE OF RANEY-NICKEL [J].
FOUILLOUX, P ;
PRETTRE, M ;
RENOUPREZ, AJ ;
MARTIN, GA ;
IMELIK, B ;
MORAWECK, B .
JOURNAL OF CATALYSIS, 1972, 25 (02) :212-+