共 9 条
- [1] Tech Ang W., Garmon F.A., Khosla P.K., Riviere C.N., Modeling rate-dependent hysteresis in piezoelectric actuators, Proceedings of the 2003 IEEE/RSJ, International Conference on Intelligent Robots and Systems, 2, pp. 1975-1980, (2003)
- [2] Newcomb C.V., Flinn I., Improving the linearity of piezoelectric ceramic actuators, Electronics Letters, 18, 11, pp. 442-444, (1982)
- [3] Jan C., Hwang C.-L., Robust control design for a piezoelectric actuator system with dominant hysteresis, Proc. 26th Conf. of the IEEE IECON2000, 3, pp. 1515-1520
- [4] Tao G., Kokotovic P.V., Adaptive control of plants with unknown hystereses, IEEE Tran. Auto. & Control, 40, 2, pp. 200-212, (1995)
- [5] Ku S.-S., Pinsopon U., Cetinkunt S., Nakjima S., Design, fabrication, and real-time neural network of a three-degrees-of-freedon nanopositioner, IEEE/ASME Trans. Mechatronics, 5, 3, pp. 273-280, (2000)
- [6] Lv Y., Wei Y., Study on open-loop precision positioning control of a micropositioning platform using a piezoelectric actuator, Fifth World Congress on Intelligent Control and Automation, 2004, 2, pp. 1255-1259, (2004)
- [7] Song G., Zhao J., Zhou X., De Abreu-Garcia J.A., Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model, IEEE/ASME Transactions on Mechatronics, 10, 2, pp. 198-209, (2005)
- [8] Ru C.-H., Sun L.I.-N., Kong M.-X., Adaptive inverse control for piezoelectric actuator based on hysteresis model, 2005 International Conference on Machine Learning and Cybernetics, ICMLC 2005, pp. 3189-3193, (2005)
- [9] Changhai R., Lining S., Weibin R., Liguo C., Adaptive inverse control for piezoelectric actuator with dominant hysteresis, Proceedings of the 2004 IEEE Int. Conf. on Control Applications, 2, pp. 973-976, (2004)