Dynamically corrected gates in silicon singlet-triplet spin qubits

被引:0
|
作者
Walelign, Habitamu Y. [1 ]
Cai, Xinxin [1 ]
Li, Bikun [2 ,3 ]
Barnes, Edwin [2 ,4 ]
Nichol, John M. [1 ]
机构
[1] Department of Physics and Astronomy, University of Rochester, Rochester,NY,14627, United States
[2] Department of Physics, Virginia Tech, Blacksburg,VA,24061, United States
[3] Pritzker School of Molecular Engineering, The University of Chicago, Chicago,IL,60637, United States
[4] Virginia Tech, Center for Quantum Information Science and Engineering, Blacksburg,VA,24061, United States
基金
美国国家科学基金会;
关键词
Fault tolerant computer systems - Gallium compounds - Gates (transistor) - Germanium compounds - Quantum noise - Quantum optics - Qubits - Radiation hardening - Semiconducting indium phosphide - Semiconductor quantum dots;
D O I
10.1103/PhysRevApplied.22.064029
中图分类号
学科分类号
摘要
Fault-tolerant quantum computation requires low physical-qubit gate errors. Many approaches exist to reduce gate errors, including both hardware- and control-optimization strategies. Dynamically corrected gates are designed to cancel specific errors and offer the potential for high-fidelity gates, but they have yet to be implemented in singlet-triplet spin qubits in semiconductor quantum dots, due in part to the stringent control constraints in these systems. In this work, we experimentally implement dynamically corrected gates designed to mitigate hyperfine noise in a singlet-triplet qubit realized in a Si/SiGe double quantum dot. The corrected gates reduce infidelities by about a factor of 3, resulting in gate fidelities above 0.99 for both identity and Hadamard gates. The gate performances depend sensitively on pulse distortions, and their specific performance reveals an unexpected distortion in our experimental setup. © 2024 American Physical Society.
引用
收藏
相关论文
共 50 条
  • [1] Fast pulse sequences for dynamically corrected gates in singlet-triplet qubits
    Throckmorton, Robert E.
    Zhang, Chengxian
    Yang, Xu-Chen
    Wang, Xin
    Barnes, Edwin
    Das Sarma, S.
    PHYSICAL REVIEW B, 2017, 96 (19)
  • [2] Spin-orbit Interactions for Singlet-Triplet Qubits in Silicon
    Harvey-Collard, Patrick
    Jacobson, N. Tobias
    Bureau-Oxton, Chloe
    Jock, Ryan M.
    Srinivasa, Vanita
    Mounce, Andrew M.
    Ward, Daniel R.
    Anderson, John M.
    Manginell, Ronald P.
    Wendt, Joel R.
    Pluym, Tammy
    Lilly, Michael P.
    Luhman, Dwight R.
    Pioro-Ladriere, Michel
    Carroll, Malcolm S.
    PHYSICAL REVIEW LETTERS, 2019, 122 (21)
  • [3] Robust quantum gates for singlet-triplet spin qubits using composite pulses
    Wang, Xin
    Bishop, Lev S.
    Barnes, Edwin
    Kestner, J. P.
    Das Sarma, S.
    PHYSICAL REVIEW A, 2014, 89 (02):
  • [4] Stroboscopically robust gates for capacitively coupled singlet-triplet qubits
    Colmenar, R. K. L.
    Kestner, J. P.
    PHYSICAL REVIEW A, 2019, 99 (01)
  • [5] Decoherence of two coupled singlet-triplet spin qubits
    Wu, Yang-Le
    Das Sarma, S.
    PHYSICAL REVIEW B, 2017, 96 (16)
  • [6] Exchange-based CNOT gates for singlet-triplet qubits with spin-orbit interaction
    Klinovaja, Jelena
    Stepanenko, Dimitrije
    Halperin, Bertrand I.
    Loss, Daniel
    PHYSICAL REVIEW B, 2012, 86 (08):
  • [7] Directly accessible entangling gates for capacitively coupled singlet-triplet qubits
    Calderon-Vargas, F. A.
    Kestner, J. P.
    PHYSICAL REVIEW B, 2015, 91 (03)
  • [8] Fast high-fidelity geometric gates for singlet-triplet qubits
    Chen, Mei-Ya
    Zhang, Chengxian
    Xue, Zheng-Yuan
    PHYSICAL REVIEW A, 2022, 105 (02)
  • [9] Hybrid Spin and Valley Quantum Computing with Singlet-Triplet Qubits
    Rohling, Niklas
    Russ, Maximilian
    Burkard, Guido
    PHYSICAL REVIEW LETTERS, 2014, 113 (17)
  • [10] Simultaneous operation of singlet-triplet qubits
    Fedele, Federico
    Chatterjee, Anasua
    Kuemmeth, Ferdinand
    2019 SILICON NANOELECTRONICS WORKSHOP (SNW), 2019, : 109 - 110