Local convergence analysis of Inexact Newton method with relative residual error tolerance under majorant condition in Riemannian manifolds

被引:0
作者
Bittencourt, Tiberio [1 ]
Ferreira, Orizon Pereira [1 ]
机构
[1] IME/UFG, CP-131, Goiânia, GO
关键词
Inexact; Local convergence analysis; Majorant principle; Newton's method; Riemannian manifold;
D O I
10.1016/j.amc.2015.03.080
中图分类号
学科分类号
摘要
A local convergence analysis of Inexact Newton's method with relative residual error tolerance for finding a singularity of a differentiable vector field defined on a complete Riemannian manifold, based on majorant principle, is presented in this paper. We prove that under local assumptions, the Inexact Newton method with a fixed relative residual error tolerance converges Q linearly to a singularity of the vector field under consideration. Using this result we show that the Inexact Newton method to find a zero of an analytic vector field can be implemented with a fixed relative residual error tolerance. In the absence of errors, our analysis retrieves the classical local theorem on the Newton method in Riemannian context. © 2015 Elsevier Inc.
引用
收藏
页码:28 / 38
页数:10
相关论文
共 34 条
[11]  
Dontchev A.L., Rockafellar R.T., Implicit Functions and Solution Mappings, Springer Monographs in Mathematics, (2009)
[12]  
Dontchev A.L., Rockafellar R.T., Convergence of inexact Newton methods for generalized equations, Math. Program., 139, 12, pp. 115-137, (2013)
[13]  
Ferreira O.P., Silva R.C.M., Local convergence of Newton's method under a majorant condition in Riemannian manifolds, IMA J. Numer. Anal., 32, 4, pp. 1696-1713, (2012)
[14]  
Ferreira O.P., Svaiter B.F., Kantorovich's theorem on Newton's method in Riemannian manifolds, J. Complex., 18, 1, pp. 304-329, (2002)
[15]  
Gondzio J., Interior point method 25 years later, European J. Oper. Res., 218, pp. 587-601, (2012)
[16]  
Gondzio J., Convergence analysis of an inexact feasible interior point method for convex quadratic programming, SIAM J. Optim., 23, 3, pp. 1510-1527, (2013)
[17]  
Lang S., Differential and Riemannian Manifolds, (1995)
[18]  
Li C., Wang J., Newton's method on Riemannian manifolds: Smale's point estimate theory under the γ-condition, IMA J. Numer. Anal., 26, 2, pp. 228-251, (2006)
[19]  
Li C., Wang J., Newton's method for sections on Riemannian manifolds: Generalized covariant α-theory, J. Complex., 24, 3, pp. 423-451, (2008)
[20]  
Li C., Wang J.-H., Dedieu J.-P., Smale's point estimate theory for Newton's method on Lie groups, J. Complex., 25, 2, pp. 128-151, (2009)