Local convergence analysis of Inexact Newton method with relative residual error tolerance under majorant condition in Riemannian manifolds

被引:0
作者
Bittencourt, Tiberio [1 ]
Ferreira, Orizon Pereira [1 ]
机构
[1] IME/UFG, CP-131, Goiânia, GO
关键词
Inexact; Local convergence analysis; Majorant principle; Newton's method; Riemannian manifold;
D O I
10.1016/j.amc.2015.03.080
中图分类号
学科分类号
摘要
A local convergence analysis of Inexact Newton's method with relative residual error tolerance for finding a singularity of a differentiable vector field defined on a complete Riemannian manifold, based on majorant principle, is presented in this paper. We prove that under local assumptions, the Inexact Newton method with a fixed relative residual error tolerance converges Q linearly to a singularity of the vector field under consideration. Using this result we show that the Inexact Newton method to find a zero of an analytic vector field can be implemented with a fixed relative residual error tolerance. In the absence of errors, our analysis retrieves the classical local theorem on the Newton method in Riemannian context. © 2015 Elsevier Inc.
引用
收藏
页码:28 / 38
页数:10
相关论文
共 34 条
[1]  
Alvarez F., Bolte J., Munier J., A unifying local convergence result for Newton's method in Riemannian manifolds, Found. Comput. Math., 8, 2, pp. 197-226, (2008)
[2]  
Amat S., Argyros I.K., Busquier S., Castro R., Hilout S., Plaza S., Traub-type high order iterative procedures on Riemannian manifolds, S e → MA J. (Boletin de la Sociedad Espanñola de Matemática Aplicada), 63, pp. 27-52, (2014)
[3]  
Amat S., Argyros I.K., Busquier S., Castro R., Hilout S., Plaza S., Newton-type methods on Riemannian manifolds under Kantorovich-type conditions, Appl. Math. Comput., 227, pp. 762-787, (2014)
[4]  
Amat S., Busquier S., Castro R., Plaza S., Third-order methods on Riemannian manifolds under Kantorovich conditions, J. Comput. Appl. Math., 255, pp. 106-121, (2014)
[5]  
Amat S., Argyros I.K., Busquier S., Castro R., Hilout S., Plaza S., On a bilinear operator free third order method on Riemannian manifolds, Appl. Math. Comput., 219, 14, pp. 7429-7444, (2013)
[6]  
Blum L., Cucker F., Shub M., Smale S., Complexity and Real Computation, (1998)
[7]  
Chen J., Li W., Convergence behaviour of inexact Newton methods under weak Lipschitz condition, J. Comput. Appl. Math., 191, 1, pp. 143-164, (2006)
[8]  
Dedieu J.-P., Priouret P., Malajovich G., Newton's method on Riemannian manifolds: Convariant alpha theory, IMA J. Numer. Anal., 23, 3, pp. 395-419, (2003)
[9]  
Dembo R.S., Eisenstat S.C., Steihaug T., Inexact Newton methods, SIAM J. Numer. Anal., 19, 2, pp. 400-408, (1982)
[10]  
Carmo M.P.D., Riemannian Geometry, (1992)