Effect of pH on azobenzene-4,4'-dicarboxylate/α-CD complex formation. Synthesis, kinetic study and molecular modeling simulations

被引:0
作者
机构
[1] Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Av. Ejército de los Andes 950, San Luis
[2] IMIBIO-CONICET, UNSL, Chacabuco 915, San Luis
[3] Instituto de Matemática Aplicada San Luis (IMASL), CONICET, Departamento de Física, Facultad de Ciencias Físico Matemáticas y Naturales, Universidad Nacional de San Luis, Av. Ejército de los Andes 950, San Luis
[4] Departamento de Química Física, Facultade de Química, Universidade de Santiago de Compostela, Address Two, Santiago
关键词
Azobenzene; Formation rate constants; Molecular dynamics simulation; Pseudorotaxane; QM/MM; α-cyclodextrin;
D O I
10.1016/j.molliq.2024.126599
中图分类号
学科分类号
摘要
The current study focuses on the molecular behavior of the azobenzene-4,4'-dicarboxylate/α-CD pseudorotaxane and how it is affected by changes in pH. A combination of experimental measurements and molecular simulations were used, including different computational calculations, to evaluate the kinetic and thermodynamic aspects of the formation of this mechanically bound architecture. The research involved determining the formation rate constants for these complexes at different pH values and conducting a comprehensive kinetic study. Additionally, the binding affinity and complexation reaction was analyzed using free energy profiles derived from umbrella sampling in molecular dynamics simulations. To gain a better understanding of the energetic and structural aspects of the complexes, hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) calculations were employed. The intermolecular interactions that stabilize the pseudorotaxanes were characterized using quantum theory of atoms in molecules (QTAIM) and Molecular Electrostatic Potentials (MEPs) © 2024 Elsevier B.V.
引用
收藏
相关论文
共 78 条
[1]  
Stoddart J.F., The chemistry of the mechanical bond, Chem. Soc. Rev., 38, pp. 1802-1820, (2009)
[2]  
Balzani V., Credi A., Silvi S., Venturi M., Artificial nanomachines based on interlocked molecular species: recent advances, Chem. Soc. Rev., 35, pp. 1135-1149, (2006)
[3]  
Balzani V., Credi A., Venturi M., Light powered molecular machines, Chem. Soc. Rev., 38, pp. 1542-1550, (2009)
[4]  
Tian H., Wang Q.-C., Recent progress on switchable rotaxanes, Chem. Soc. Rev., 35, pp. 361-374, (2006)
[5]  
Saito H., Yonemura H., Nakamura H., Matsuo T., Stability and exchange properties of through-ring cyclodextrin complexes. Effects of chain length in polymethylene Bis[1-pyridinium] as guest molecules, Chem. Lett., 19, 4, pp. 535-538, (2006)
[6]  
Travelet C., Schlatter G., Hebraud P., Brochon C., Lapp A., Hadziioannou G., Formation and self-organization kinetics of α-CD/PEO-based pseudo-polyrotaxanes in water. A specific behavior at 30 degrees C, Langmuir, 25, 15, pp. 8323-8734, (2009)
[7]  
Travelet C., Schlatter G., Hebraud P., Brochon C., Anokhin D.V., Ivanov D.A., Hadziioannou G., Physical gels based on polyrotaxanes: kinetics of the gelation, and relative contributions of α-cyclodextrin and poly(ethylene oxide) to the gel cohesion, Macromol. Symp., 291-292, 1, pp. 202-211, (2010)
[8]  
Travelet C., Hebraud P., Perry C., Brochon C., Hadziioannou G., Lapp A., Schlatter G., Temperature-dependent structure of α-CD/PEO-based polyrotaxanes in concentrated solution in DMSO: kinetics and multiblock copolymer behavior, Macromolecules, 43, 4, pp. 1915-1921, (2010)
[9]  
Yonemura H., Saito H., Matsushima S., Nakamura H., Matsuo T., Anomalously stable cyclodextrin complexes of phenothiazine-viologen linked compounds with a long spacer chain, Tetrahedron Lett., 30, 24, pp. 3143-3146, (1989)
[10]  
Uekama K., Hirayama F., Irie T., Cyclodextrin drug carrier systems, Chem. Rev., 98, 5, pp. 2045-2076, (1998)