Nanocrystalline cellulose from Calophyllum inophyllum shells waste by adjusting organic acid hydrolysis and optimization of reaction parameters using response surface methodology

被引:4
作者
Melenia, Alvina Tata [1 ]
Jovita, Stella [1 ]
Utami, Diana Inas [1 ]
Tamim, Rustam [1 ]
Holilah, Holilah [2 ]
Bahruji, Hasliza [3 ]
Hamid, Zuratul Ain Abdul [4 ]
Mubarok, Fahmi [5 ]
Widiyastuti, Widiyastuti
Wibisono, Alvian Toto [6 ]
Suprapto, Suprapto [1 ]
Jalil, Aishah Abdul [7 ,8 ]
Prasetyoko, Didik [1 ]
机构
[1] Inst Teknol Sepuluh Nopember ITS, Fac Sci & Data Analyt, Dept Chem, Sukolilo 60111, Surabaya, Indonesia
[2] Natl Res & Innovat Agcy Indonesia BRIN, Res Ctr Biomass & Bioprod, Cibinong 16911, Indonesia
[3] Univ Brunei Darussalam, Ctr Adv Mat & Energy Sci, Jalan Tungku Link, BE-1410 Gadong, Brunei
[4] Univ Sains Malaysia, Sch Mat & Mineral Resources Engn, Nibong Tebal 14300, Pulau Pinang, Malaysia
[5] Inst Teknol Sepuluh Nopember ITS, Fac Ind Technol & Syst Engn, Dept Mech Engn, Sukolilo 60111, Surabaya, Indonesia
[6] Inst Teknol Sepuluh Nopember ITS, Fac Ind Technol & Syst Engn, Dept Mat & Met Engn, Sukolilo 60111, Surabaya, Indonesia
[7] Univ Teknol Malaysia, Fac Chem & Energy Engn, Dept Chem Engn, Skudai 81310, Johor Bahru, Malaysia
[8] Univ Teknol Malaysia, Inst Future Energy, Ctr Hydrogen Energy, Johor Baharu 81310, Johor, Malaysia
关键词
Calophyllum inophyllum; Nanocrystalline cellulose; Organic acids; Response surface methodology; MICROCRYSTALLINE CELLULOSE; NANOCELLULOSE;
D O I
10.1016/j.ijbiomac.2024.135705
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Biodiesel production from Calophyllum inophyllum oil in Indonesia produces significant biomass waste, including seed shells. This study explores the conversion of the seed shell of Calophyllum inophyllum into nanocrystalline cellulose (NCC) via consecutive alkalization, bleaching and hydrolysis using various organic acids. Scanning electron microscopy (SEM) analysis showed a reduction in the diameter of cellulose fibers from 21.7 mu m to 9.6 mu m after alkalinization and bleaching. The hydrolysis process using several organic acids was optimized to produce thermally stable nanocellulose while maintaining its crystallinity. The diameter of the resulting nanofibrous cellulose was 20.53 nm for citric acid, 21.69 nm for maleic acid, and 22.06 nm for formic acid hydrolysis. In particular, lactic acid-derived NCC (NCC-LA) showed the highest crystallinity of 64.22 % with an average diameter of similar to 13.69 nm. Optimization of hydrolysis parameters using Response Surface Methodology (RSM) suggested 74.79 % crystallinity could be achieved with 6.01 M lactic acid following 3.46 h of hydrolysis at 91.12 degrees C.
引用
收藏
页数:11
相关论文
共 41 条
[1]   Nanocrystalline cellulose isolation via acid hydrolysis from non-woody biomass: Importance of hydrolysis parameters [J].
Almashhadani, Abdulsalam Q. ;
Leh, Cheu Peng ;
Chan, Siok-Yee ;
Lee, Chong Yew ;
Goh, Choon Fu .
CARBOHYDRATE POLYMERS, 2022, 286
[2]   Lignocellulosic Agricultural Waste Valorization to Obtain Valuable Products: An Overview [J].
Blasi, Alessandro ;
Verardi, Alessandra ;
Lopresto, Catia Giovanna ;
Siciliano, Sarah ;
Sangiorgio, Paola .
RECYCLING, 2023, 8 (04)
[3]   Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications [J].
Brinchi, L. ;
Cotana, F. ;
Fortunati, E. ;
Kenny, J. M. .
CARBOHYDRATE POLYMERS, 2013, 94 (01) :154-169
[4]   Non-cytotoxic, highly functionalized cellulose nanocrystals with high crystallinity and thermal stability derived from a novel agromass of Elettaria cardamomum, using a soft and benign mild oxalic acid hydrolysis [J].
Cherian, Reeba Mary ;
Varghese, Rini Thresia ;
Antony, Tijo ;
Malhotra, Akshit ;
Kargarzadeh, Hanieh ;
Chauhan, Suchitra Rajput ;
Chauhan, Ashwini ;
Chirayil, Cintil Jose ;
Thomas, Sabu .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 253
[5]   Isolation and characterisation of microcrystalline cellulose and cellulose nanocrystals from coffee husk and comparative study with rice husk [J].
Collazo-Bigliardi, Sofia ;
Ortega-Toro, Rodrigo ;
Chiralt Boix, Amparo .
CARBOHYDRATE POLYMERS, 2018, 191 :205-215
[6]   Nanocrystalline cellulose extracted from pine wood and corncob [J].
Ditzel, Fernanda I. ;
Prestes, Eduardo ;
Carvalho, Benjamim M. ;
Demiate, Ivo M. ;
Pinheiro, Luis A. .
CARBOHYDRATE POLYMERS, 2017, 157 :1577-1585
[7]   Immobilization of Andean berry (Vaccinium meridionale) polyphenols on nanocellulose isolated from banana residues: A natural food additive with antioxidant properties [J].
Felipe Alzate-Arbelaez, Andres ;
Dorta, Eva ;
Lopez-Alarcon, Camilo ;
Cortes, Farid B. ;
Rojano, Benjamin A. .
FOOD CHEMISTRY, 2019, 294 :503-517
[8]   Use of ball mill to prepare nanocellulose from eucalyptus biomass: Challenges and process optimization by combined method [J].
Ferreira, Rafaela R. ;
Souza, Alana G. ;
Nunes, Lucas L. ;
Shahi, Naresh ;
Rangari, Vijaya K. ;
Rosa, Derval dos Santos .
MATERIALS TODAY COMMUNICATIONS, 2020, 22
[9]   Sono-chemical preparation of cellulose nanocrystals from lignocellulose derived materials [J].
Filson, Paul B. ;
Dawson-Andoh, Benjamin E. .
BIORESOURCE TECHNOLOGY, 2009, 100 (07) :2259-2264
[10]   Nanocrystalline cellulose from lactic acid hydrolysis of pepper waste (Piper nigrum L.): Response surface methodology optimization and application in bio-composite [J].
Holilah, Holilah ;
Suryanegara, Lisman ;
Bahruji, Hasliza ;
Masruchin, Nanang ;
Suprapto, Suprapto ;
Ediati, Ratna ;
Asranudin, Asranudin ;
Jalil, Aishah A. ;
Ramadhani, Dini Viandi ;
Hamid, Zuratul Ain Abdul ;
Prasetyoko, Didik .
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 27 :6344-6357