Enhanced blind source separation algorithm for partial discharge signals using Joint Approximate diagonalization of Eigenmatrices

被引:0
作者
Jin, Hai [1 ,2 ]
Pan, Jidong [1 ,2 ]
Gao, Longlong [1 ,2 ]
Zhang, Chaoming [1 ,2 ]
Zhang, Hongliang [1 ,2 ]
机构
[1] Lanzhou Univ Technol, Coll Elect Engn & Informat Engn, Lanzhou 730050, Peoples R China
[2] Lanzhou Univ Technol, Key Lab Gansu Adv Control Ind Proc, Lanzhou 730050, Peoples R China
基金
中国国家自然科学基金;
关键词
Partial discharge; Joint approximate diagonalization of; eigenmatrices; Blind source separation; Amplitude correction; NOISE SEPARATION; IDENTIFICATION; PD; DECOMPOSITION;
D O I
10.1016/j.measurement.2024.116552
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Partial discharge (PD) is an early indicator of insulation defects in power equipment. Multiple PD sources create mixed signals, complicating identification. This study simulates mixed PD signals using four typical PD types from Gas Insulated Switchgear (GIS) and proposes an improved Joint Approximate Diagonalization of Eigenmatrices (JADE) algorithm with an amplitude correction coefficient matrix. This method effectively separates mixed PD signals, addressing sign and amplitude uncertainties in traditional blind source separation algorithms. Performance is evaluated using similarity coefficients and root mean square relative errors, with separated signals achieving similarity coefficients above 0.99 and a maximum root mean square relative error of 6.0898. The method demonstrates strong anti-interference capabilities for noisy signals with a signal-to-noise ratio above 5 dB. For measured PD model signals, the average similarity coefficient and root mean square relative error are 0.9998 and 2.8599, respectively.
引用
收藏
页数:7
相关论文
共 29 条
  • [1] Partial Discharge and Noise Separation by Means of Spectral-power Clustering Techniques
    Ardila-Rey, J. A.
    Martinez-Tarifa, J. M.
    Robles, G.
    Rojas-Moreno, M. V.
    [J]. IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2013, 20 (04) : 1436 - 1443
  • [2] Ba J., 2014, 3 INT C LEARN REPR I
  • [3] ON THE CHARACTER OF DIFFERENT FORMS OF PARTIAL DISCHARGE AND THEIR RELATED TERMINOLOGIES
    BARTNIKAS, R
    NOVAK, JP
    [J]. IEEE TRANSACTIONS ON ELECTRICAL INSULATION, 1993, 28 (06): : 956 - 968
  • [4] Identification of Multiple Partial Discharge Sources using Acoustic Emission Technique and Blind Source Separation
    Boya, Carlos
    Ruiz-Llata, Marta
    Posada, Julio
    Antonio Garcia-Souto, Jose
    [J]. IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2015, 22 (03) : 1663 - 1673
  • [5] Identification of partial discharges immersed in noise in large hydro-generators based on improved wavelet selection methods
    Carvalho, Andre T.
    Lima, Antonio C. S.
    Cunha, Caio F. F. C.
    Petraglia, Mariane
    [J]. MEASUREMENT, 2015, 75 : 122 - 133
  • [6] A new methodology for the identification of PD in electrical apparatus: Properties and applications
    Cavallini, A
    Montanari, GC
    Puletti, F
    Contin, A
    [J]. IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2005, 12 (02) : 203 - 215
  • [7] Cheng Wang-liu, 2008, Power System Technology, V32, P94
  • [8] Cichocki A, 1997, IEICE T FUND ELECTR, VE80A, P1595
  • [9] Digital detection and fuzzy classification of partial discharge signals
    Contin, A
    Cavallini, A
    Montanari, GC
    Pasini, G
    Puletti, F
    [J]. IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2002, 9 (03) : 335 - 348
  • [10] Contin A, 2000, 2000 ANNUAL REPORT CONFERENCE ON ELECTRICAL INSULATION AND DIELECTRIC PHENOMENA, VOLS. I & II, P522, DOI 10.1109/CEIDP.2000.884013