H9N2 avian influenza virus diagnostics utilizing specific high-sensitivity enzymatic molecular system termed RPA-based CRISPR-Cas13a

被引:0
作者
He, Dalin [1 ]
Zhao, Saisai [1 ]
Wang, Fangfang [1 ]
Wu, Bingrong [1 ]
Wei, Feng [1 ]
Zhao, Yubo [1 ]
Wei, Xinhui [1 ]
Ren, Hui [1 ]
Zhang, Meijuan [1 ]
Fan, Yaru [1 ]
Zhang, Jiahao [1 ]
Yu, Shumin [1 ]
Tang, Yi [2 ]
Diao, Youxiang [1 ]
机构
[1] Shandong Agr Univ, Coll Vet Med, Tai An 271018, Shandong, Peoples R China
[2] Chinese Acad Agr Sci, Inst Anim Sci, Beijing 10091, Peoples R China
关键词
Recombinase polymerase amplification; CRISRPR/Cas13; Lateral flow assay; ANTIBODIES;
D O I
10.1016/j.ijbiomac.2025.140474
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
H9N2 avian influenza virus (AIV), a major pathogen causing respiratory infections in poultry, poses a significant threat to the poultry industry and human health. Early detection and control of H9N2 infections are essential for minimizing economic losses and preventing potential zoonotic transmission. A novel CRISPR-Cas family member called CRISPR-Cas13a comprises the CRISPR RNA (crRNA) and Cas13a nuclease. Through the crRNA-based reprogramming of Cas13a, a platform for sensing RNAs specifically is available. In this study, we developed a RPA-based CRISPR-Cas13a diagnostic method for rapid detection of the H9N2 AIV. The results demonstrated that at a limit of 10 copies/mu L and 102 copies/mu L could be detected within 50 min, by fluorescence detection and lateral flow strip, respectively, offering a highly sensitive method for H9N2 detection. This method exhibited excellent specificity, distinguishing H9N2 from other pathogens. Furthermore, the RPA-Cas13a-based detection system was tested on clinical samples, showing comparable performance to RT-qPCR. The detection results were visualized using either lateral flow assays or fluorescence, making it a suitable tool for on-site, field-deployable diagnostics. In a word, this RPA-Cas13a diagnostic approach offers high reliability, sensitivity, and specificity, with promising potential for rapidly detecting H9N2 and other viral pathogens in clinical and food safety applications.
引用
收藏
页数:9
相关论文
共 51 条
[1]   Zika virus lateral flow assays using reverse transcription-loop-mediated isothermal amplification [J].
Ahn, Gna ;
Lee, SeonHyung ;
Lee, Se Hee ;
Baek, Yun Hee ;
Song, Min-Suk ;
Kim, Yang-Hoon ;
Ahn, Ji-Young .
RSC ADVANCES, 2021, 11 (29) :17800-17808
[2]   An overview of the epidemiology of avian influenza [J].
Alexander, Dennis J. .
VACCINE, 2007, 25 (30) :5637-5644
[3]   Detection and spread of high pathogenicity avian influenza virus H5N1 in the Antarctic Region [J].
Banyard, Ashley C. ;
Bennison, Ashley ;
Byrne, Alexander M. P. ;
Reid, Scott M. ;
Lynton-Jenkins, Joshua G. ;
Mollett, Benjamin ;
De Silva, Dilhani ;
Peers-Dent, Jacob ;
Finlayson, Kim ;
Hall, Rosamund ;
Blockley, Freya ;
Blyth, Marcia ;
Falchieri, Marco ;
Fowler, Zoe ;
Fitzcharles, Elaine M. ;
Brown, Ian H. ;
James, Joe .
NATURE COMMUNICATIONS, 2024, 15 (01)
[4]   Development of a real-time TaqMan RT-PCR assay for the detection of H9N2 avian influenza viruses [J].
Ben Shabat, M. ;
Meir, R. ;
Haddas, R. ;
Lapin, E. ;
Shkoda, I. ;
Raibstein, I. ;
Perk, S. ;
Davidson, I. .
JOURNAL OF VIROLOGICAL METHODS, 2010, 168 (1-2) :72-77
[5]   The dynamic proteome of influenza A virus infection identifies M segment splicing as a host range determinant [J].
Bogdanow, Boris ;
Wang, Xi ;
Eichelbaum, Katrin ;
Sadewasser, Anne ;
Husic, Immanuel ;
Paki, Katharina ;
Budt, Matthias ;
Hergeselle, Martha ;
Vetter, Barbara ;
Hou, Jingyi ;
Chen, Wei ;
Wiebusch, Lueder ;
Meyer, Irmtraud M. ;
Wolff, Thorsten ;
Selbach, Matthias .
NATURE COMMUNICATIONS, 2019, 10 (1)
[6]   H7N7 Avian Influenza Virus Mutation from Low to High Pathogenicity on a Layer Chicken Farm in the UK [J].
Byrne, Alexander M. P. ;
Reid, Scott M. ;
Seekings, Amanda H. ;
Nunez, Alejandro ;
Prieto, Ana B. Obeso ;
Ridout, Susan ;
Warren, Caroline J. ;
Puranik, Anita ;
Ceeraz, Vanessa ;
Essen, Stephen ;
Slomka, Marek J. ;
Banks, Jill ;
Brown, Ian H. ;
Brookes, Sharon M. .
VIRUSES-BASEL, 2021, 13 (02)
[7]   Novel aerosol detection platform for SARS-CoV-2: Based on specific magnetic nanoparticles adsorption sampling and digital droplet PCR detection [J].
Chen, Hui ;
Ma, Xinye ;
Zhang, Xinyu ;
Hu, Gui ;
Deng, Yan ;
Li, Song ;
Chen, Zhu ;
He, Nongyue ;
Wu, Yanqi ;
Jiang, Zhihong .
CHINESE CHEMICAL LETTERS, 2023, 34 (01)
[8]   CRISPR/Cas13a-based genome editing for establishing the detection method of H9N2 subtype avian influenza virus [J].
Chen, Sha-Sha ;
Yang, Yong-Lei ;
Wang, Hong-Yun ;
Guo, Tian-Kui ;
Azeem, Riaz-M ;
Shi, Chun-Wei ;
Yang, Gui-Lian ;
Huang, Hai-Bin ;
Jiang, Yan-Long ;
Wang, Jian-Zhong ;
Cao, Xin ;
Wang, Nan ;
Zeng, Yan ;
Yang, Wen-Tao ;
Wang, Chun-Feng .
POULTRY SCIENCE, 2024, 103 (10)
[9]   Influenza Infection in Humans Induces Broadly Cross-Reactive and Protective Neuraminidase-Reactive Antibodies [J].
Chen, Yao-Qing ;
Wohlbold, Teddy John ;
Zheng, Nai-Ying ;
Huang, Min ;
Huang, Yunping ;
Neu, Karlynn E. ;
Lee, Jiwon ;
Wan, Hongquan ;
Rojas, Karla Thatcher ;
Kirkpatrick, Ericka ;
Henry, Carole ;
Palm, Anna-Karin E. ;
Stamper, Christopher T. ;
Lan, Linda Yu-Ling ;
Topham, David J. ;
Treanor, John ;
Wrammert, Jens ;
Ahmed, Rafi ;
Eichelberger, Maryna C. ;
Georgiou, George ;
Krammer, Florian ;
Wilson, Patrick C. .
CELL, 2018, 173 (02) :417-+
[10]   The structure of the influenza A virus genome [J].
Dadonaite, Bernadeta ;
Gilbertson, Brad ;
Knight, Michael L. ;
Trifkovic, Sanja ;
Rockman, Steven ;
Laederach, Alain ;
Brown, Lorena E. ;
Fodor, Ervin ;
Bauer, David L. V. .
NATURE MICROBIOLOGY, 2019, 4 (11) :1781-1789