Fast-Poly: A Fast Polyhedral Algorithm for 3D Multi-Object Tracking

被引:5
作者
Li, Xiaoyu [1 ]
Liu, Dedong [1 ]
Wu, Yitao [1 ]
Wu, Xian [1 ]
Zhao, Lijun [1 ]
Gao, Jinghan [1 ]
机构
[1] Harbin Inst Technol, State Key Lab Robot & Syst, Harbin 150006, Peoples R China
基金
中国国家自然科学基金;
关键词
Three-dimensional displays; Tracking; Accuracy; Trajectory; Real-time systems; Measurement; Pipelines; Kalman filters; Robustness; Robots; Multi-object tracking (MOT); real-time efficiency; 3D perception;
D O I
10.1109/LRA.2024.3475882
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
3D Multi-Object Tracking (MOT) captures stable and comprehensive motion states of surrounding obstacles, essential for robotic perception. However, current 3D trackers face issues with accuracy and latency consistency. In this letter, we propose Fast-Poly, a fast and effective filter-based method for 3D MOT. Building upon our previous work Poly-MOT, Fast-Poly addresses object rotational anisotropy in 3D space, enhances local computation densification, and leverages parallelization technique, improving inference speed and precision. Fast-Poly is extensively tested on two large-scale tracking benchmarks with Python implementation. On the nuScenes dataset, Fast-Poly achieves new state-of-the-art performance with 75.8% AMOTA among all methods and can run at 34.2 FPS on a personal CPU. On the Waymo dataset, Fast-Poly exhibits competitive accuracy with 63.6% MOTA and impressive inference speed (35.5 FPS).
引用
收藏
页码:10519 / 10526
页数:8
相关论文
共 37 条
[11]  
Gwak J, 2022, Arxiv, DOI [arXiv:2208.10056, 10.48550/arXiv.2208.10056]
[12]  
Huang JJ, 2022, Arxiv, DOI arXiv:2112.11790
[13]   EagerMOT: 3D Multi-Object Tracking via Sensor Fusion [J].
Kim, Aleksandr ;
Osep, Aljosa ;
Leal-Taixe, Laura .
2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, :11315-11321
[14]   The Hungarian Method for the assignment problem [J].
Kuhn, HW .
NAVAL RESEARCH LOGISTICS, 2005, 52 (01) :7-21
[15]   Poly-MOT: A Polyhedral Framework For 3D Multi-Object Tracking [J].
Li, Xiaoyu ;
Xie, Tao ;
Liu, Dedong ;
Gao, Jinghan ;
Dai, Kun ;
Jiang, Zhiqiang ;
Zhao, Lijun ;
Wang, Ke .
2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, :9391-9398
[16]  
Liu C., 2023, P INT J COMPUT VIS, P1
[17]   BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird's-Eye View Representation [J].
Liu, Zhijian ;
Tang, Haotian ;
Amini, Alexander ;
Yang, Xinyu ;
Mao, Huizi ;
Rus, Daniela L. ;
Han, Song .
2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, :2774-2781
[18]   HOTA: A Higher Order Metric for Evaluating Multi-object Tracking [J].
Luiten, Jonathon ;
Osep, Aljosa ;
Dendorfer, Patrick ;
Torr, Philip ;
Geiger, Andreas ;
Leal-Taixe, Laura ;
Leibe, Bastian .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2021, 129 (02) :548-578
[19]  
Pang Ziqi, 2023, Computer Vision - ECCV 2022 Workshops: Proceedings. Lecture Notes in Computer Science (13801), P680, DOI 10.1007/978-3-031-25056-9_43
[20]   Standing Between Past and Future: Spatio-Temporal Modeling for Multi-Camera 3D Multi-Object Tracking [J].
Pang, Ziqi ;
Li, Jie ;
Tokmakov, Pavel ;
Chen, Dian ;
Zagoruyko, Sergey ;
Wang, Yu-Xiong .
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, :17928-17938