Fast-Poly: A Fast Polyhedral Algorithm for 3D Multi-Object Tracking

被引:5
作者
Li, Xiaoyu [1 ]
Liu, Dedong [1 ]
Wu, Yitao [1 ]
Wu, Xian [1 ]
Zhao, Lijun [1 ]
Gao, Jinghan [1 ]
机构
[1] Harbin Inst Technol, State Key Lab Robot & Syst, Harbin 150006, Peoples R China
基金
中国国家自然科学基金;
关键词
Three-dimensional displays; Tracking; Accuracy; Trajectory; Real-time systems; Measurement; Pipelines; Kalman filters; Robustness; Robots; Multi-object tracking (MOT); real-time efficiency; 3D perception;
D O I
10.1109/LRA.2024.3475882
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
3D Multi-Object Tracking (MOT) captures stable and comprehensive motion states of surrounding obstacles, essential for robotic perception. However, current 3D trackers face issues with accuracy and latency consistency. In this letter, we propose Fast-Poly, a fast and effective filter-based method for 3D MOT. Building upon our previous work Poly-MOT, Fast-Poly addresses object rotational anisotropy in 3D space, enhances local computation densification, and leverages parallelization technique, improving inference speed and precision. Fast-Poly is extensively tested on two large-scale tracking benchmarks with Python implementation. On the nuScenes dataset, Fast-Poly achieves new state-of-the-art performance with 75.8% AMOTA among all methods and can run at 34.2 FPS on a personal CPU. On the Waymo dataset, Fast-Poly exhibits competitive accuracy with 63.6% MOTA and impressive inference speed (35.5 FPS).
引用
收藏
页码:10519 / 10526
页数:8
相关论文
共 37 条
[1]   Faster-LIO: Lightweight Tightly Coupled Lidar-Inertial odometry Using Parallel Sparse Incremental Voxels [J].
Bai, Chunge ;
Xiao, Tao ;
Chen, Yajie ;
Wang, Haoqian ;
Zhang, Fang ;
Gao, Xiang .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) :4861-4868
[2]   TransFusion: Robust LiDAR-Camera Fusion for 3D Object Detection with Transformers [J].
Bai, Xuyang ;
Hu, Zeyu ;
Zhu, Xinge ;
Huang, Qingqiu ;
Chen, Yilun ;
Fu, Hangbo ;
Tai, Chiew-Lan .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :1080-1089
[3]   Score refinement for confidence-based 3D multi-object tracking [J].
Benbarka, Nuri ;
Schroder, Jona ;
Zell, Andreas .
2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, :8083-8090
[4]  
Bernardin Keni., 2006, 6 IEEE INT WORKSH VI, V90
[5]   nuScenes: A multimodal dataset for autonomous driving [J].
Caesar, Holger ;
Bankiti, Varun ;
Lang, Alex H. ;
Vora, Sourabh ;
Liong, Venice Erin ;
Xu, Qiang ;
Krishnan, Anush ;
Pan, Yu ;
Baldan, Giancarlo ;
Beijbom, Oscar .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11618-11628
[6]   Cascade R-CNN: Delving into High Quality Object Detection [J].
Cai, Zhaowei ;
Vasconcelos, Nuno .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :6154-6162
[7]   LargeKernel3D: Scaling up Kernels in 3D Sparse CNNs [J].
Chen, Yukang ;
Liu, Jianhui ;
Zhang, Xiangyu ;
Qi, Xiaojuan ;
Jia, Jiaya .
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, :13488-13498
[8]   3DMOTFormer: Graph Transformer for Online 3D Multi-Object Tracking [J].
Ding, Shuxiao ;
Rehder, Eike ;
Schneider, Lukas ;
Cordts, Marius ;
Gall, Juergen .
2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, :9750-9760
[9]  
Fischer T., 2022, P 6 ANN C ROB LEARN
[10]  
Graham R. L., 1972, Information Processing Letters, V1, P132, DOI 10.1016/0020-0190(72)90045-2