Naturally superionic polymer electrolyte of macromolecular lignin for all-solid-state sodium-ion batteries at room temperature

被引:4
作者
Lin, Xuliang [1 ,3 ]
Hong, Ruitong [1 ]
Su, Shaoping [1 ]
Li, Qifei [2 ]
Chen, Liheng [1 ,3 ]
Rui, Xianhong [2 ]
Qiu, Xueqing [1 ,3 ]
机构
[1] Guangdong Univ Technol, Sch Chem Engn & Light Ind, Guangdong Prov Key Lab Plant Resources Biorefinery, Guangzhou 510006, Peoples R China
[2] Guangdong Univ Technol, Sch Mat & Energy, Guangzhou 510006, Peoples R China
[3] Chem & Chem Engn Guangdong Lab, Jieyang Branch, Jieyang 515200, Peoples R China
关键词
Sodium-ion battery; Solid-state polymer electrolyte; Macromolecular lignin; Room temperature; Long cycle life; HIGH-PERFORMANCE;
D O I
10.1016/j.ensm.2024.103900
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid polymer electrolytes (SPEs) that offer superior safety, mechanical strength and flexibility are crucial for advancing next-generation sodium-ion batteries (SIBs). Conventional SPEs often display temperature sensitivity, leading to relatively low ionic conductivity at room temperature (RT). Herein, lignin-based SPEs (LG-SPEs) are created by solvation and desolvation of lignin and sodium bis(fluorosulfonyl)imide (NaFSI). Theoretical calculations reveal that lignin (containing rich functional groups) and FSI- molecules facilitate the movement of Naions within the electrolyte by minimizing steric hindrance and offering migration sites. Consequently, LG-SPEs demonstrate an enhanced ionic conductivity of 3.4 x 10-4 S cm- 1 at RT, with a Na-ion transfer number as high as 0.53. The assembled all-solid-state SIB comprising Na3V2(PO4)3/LG-SPE/NaTi2(PO4)3 exhibits excellent electrochemical performance at RT, achieving a specific capacity of 95 mA h g- 1 and retaining 82 % of its capacity after 200 cycles at 0.1 C. This work presents an environmentally friendly and straightforward methodology for developing high-performance SPEs at RT, while also opening up new avenues for the valorization of lignin.
引用
收藏
页数:8
相关论文
共 50 条
[1]   Recent progress, challenges, and perspectives in the development of solid-state electrolytes for sodium batteries [J].
Ahmad, Haseeb ;
Kubra, Khadija Tul ;
Butt, Annam ;
Nisar, Umair ;
Iftikhar, Faiza Jan ;
Ali, Ghulam .
JOURNAL OF POWER SOURCES, 2023, 581
[2]   Sodium-Ion Battery Electrolytes: Modeling and Simulations [J].
Avall, Gustav ;
Mindemark, Jonas ;
Brandell, Daniel ;
Johansson, Patrik .
ADVANCED ENERGY MATERIALS, 2018, 8 (17)
[3]   Incorporating allylated lignin-derivatives in thiol-ene gel-polymer electrolytes [J].
Baroncini, Elyse A. ;
Stanzione, Joseph F., III .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2018, 113 :1041-1051
[4]   Inhibition of Crystallization of Poly(ethylene oxide) by Ionic Liquid: Insight into Plasticizing Mechanism and Application for Solid-State Sodium Ion Batteries [J].
Chen, Guanghai ;
Bai, Ying ;
Gao, Yongsheng ;
Wang, Zhaohua ;
Zhang, Kun ;
Ni, Qiao ;
Wu, Feng ;
Xu, Huajie ;
Wu, Chuan .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (46) :43252-43260
[5]   High performance solid-state sodium batteries enabled by boron contained 3D composite polymer electrolyte [J].
Chen, Suli ;
Feng, Fan ;
Che, Haiying ;
Yin, Yimei ;
Ma, Zi-Feng .
CHEMICAL ENGINEERING JOURNAL, 2021, 406
[6]   Lignin-derived materials and their applications in rechargeable batteries [J].
Chen, Wei-Jing ;
Zhao, Chang-Xin ;
Li, Bo-Quan ;
Yuan, Tong-Qi ;
Zhang, Qiang .
GREEN CHEMISTRY, 2022, 24 (02) :565-584
[7]   Mechanistic insights into lignin depolymerisation in acidic ionic liquids [J].
De Gregorio, Gilbert F. ;
Weber, Cameron C. ;
Grasvik, John ;
Welton, Tom ;
Brandt, Agnieszka ;
Hallett, Jason P. .
GREEN CHEMISTRY, 2016, 18 (20) :5456-5465
[8]   Impact of the electrolyte salt anion on the solid electrolyte interphase formation in sodium ion batteries [J].
Eshetu, Gebrekidan Gebresilassie ;
Diemant, Thomas ;
Hekmatfar, Maral ;
Grugeon, Sylvie ;
Behm, R. Juergen ;
Laruelle, Stephane ;
Armand, Michel ;
Passerini, Stefano .
NANO ENERGY, 2019, 55 :327-340
[9]   PY13FSI-Infiltrated SBA-15 as Nonflammable and High Ion-Conductive Ionogel Electrolytes for Quasi-Solid-State Sodium-Ion Batteries [J].
Gao, Yongsheng ;
Chen, Guanghai ;
Wang, Xinran ;
Yang, Haoyi ;
Wang, Zhaohua ;
Lin, Weiran ;
Xu, Huajie ;
Bai, Ying ;
Wu, Chuan .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (20) :22981-22991
[10]   Polymer electrolytes for sodium-ion batteries [J].
Gebert, Florian ;
Knott, Jonathan ;
Gorkin, Robert, III ;
Chou, Shu-Lei ;
Dou, Shi-Xue .
ENERGY STORAGE MATERIALS, 2021, 36 :10-30