Aluminum Nitride Assisted Silicon Thermo-Optic Phase Shifter

被引:0
|
作者
Huang, Weixiong [1 ,2 ,3 ]
Xia, Lipeng [1 ,2 ,3 ]
Li, Ting [1 ,2 ,3 ]
Li, Jiawei [1 ,2 ,3 ]
Wu, Tao [1 ,4 ]
Zou, Yi [1 ,4 ]
机构
[1] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai 201210, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Shanghai Engn Res Ctr Energy Efficient & Custom AI, Shanghai 201210, Peoples R China
基金
上海市自然科学基金;
关键词
Aluminum nitride; silicon photonics; thermo-optic phase shifter;
D O I
10.1109/JLT.2024.3435534
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Thermo-optic (TO) phase shifter serves as a fundamental component in large-scale integrated photonic chips, where its power consumption and response time significantly impact system performance. Various structures have been explored to enhance the performance of TO phase shifters, including spiral waveguide, suspended structures, and slow-light configurations. However, these structures often come with trade-offs in terms of footprint, robustness, bandwidth, or insertion loss. In this paper, we present a high-performance CMOS-compatible TO phase shifter that maintains a small footprint and minimal optical loss. Leveraging the high thermal conductivity of aluminum nitride (AlN), we achieve a pi-phase shifting power of 14 mW for Mach-Zehnder interferometers (MZI) and 1.7 mW for ring resonators. The bandwidth of both MZI and ring resonator TO phase shifters reach 145 kHz. The proposed TO phase shifter demonstrates significant potential for large-scale integration into photonics chips, offering high power efficiency and broad bandwidth.
引用
收藏
页码:8826 / 8831
页数:6
相关论文
共 50 条
  • [1] Efficient and compact thermo-optic phase shifter in silicon-rich silicon nitride
    Nejadriahi, Hani
    Pappert, Steve
    Fainman, Yeshaiahu
    Yu, Paul
    OPTICS LETTERS, 2021, 46 (18) : 4646 - 4649
  • [2] An Improved Thermo-Optic Phase Shifter with AlN Block for Silicon Photonics
    Zhu, Shiyang
    Hu, Ting
    Xu, Zhengji
    Dong, Yuan
    Zhong, Qize
    Li, Yu
    Singh, Navab
    2019 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), 2019,
  • [3] Efficient, compact and low loss thermo-optic phase shifter in silicon
    Harris, Nicholas C.
    Ma, Yangjin
    Mower, Jacob
    Baehr-Jones, Tom
    Englund, Dirk
    Hochberg, Michael
    Galland, Christophe
    OPTICS EXPRESS, 2014, 22 (09): : 10487 - 10493
  • [4] Study of thermo-optic properties of aluminum nitride waveguides
    Tang, X
    Yuan, YF
    Wongchotigul, K
    Spencer, MG
    Ying, H
    Ling, Z
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES VI, PTS 1 AND 2, 1998, 3283 : 938 - 941
  • [5] Aluminum nitride electro-optic phase shifter for backend integration on silicon
    Zhu, Shiyang
    Lo, Guo-Qiang
    OPTICS EXPRESS, 2016, 24 (12): : 12501 - 12506
  • [6] Thermo-optic coefficient of PECVD silicon-rich silicon nitride
    Pruiti, Natale G.
    Klitis, Charalambos
    Gough, Christopher
    May, Stuart
    Sorel, Marc
    OPTICS LETTERS, 2020, 45 (22) : 6242 - 6245
  • [7] Optimizations of Double Titanium Nitride Thermo-Optic Phase-Shifter Heaters Using SOI Technology
    Krause, Eylon Eliyahu
    Malka, Dror
    SENSORS, 2023, 23 (20)
  • [8] Power-efficient silicon nitride thermo-optic phase shifters for visible light
    Yong, Zheng
    Chen, Hong
    Luo, Xianshu
    Govdeli, Alperen
    Chua, Hongyao
    Azadeh, Saeed S.
    Stalmashonak, Andrei
    Lo, Guo-Qiang
    Poon, Joyce K. S.
    Sacher, Wesley D.
    OPTICS EXPRESS, 2022, 30 (05) : 7225 - 7237
  • [9] Thermo-optic simulations of silicon nitride / polymer hybrid waveguides
    Liu, Anjin
    Zhang, Ziyang
    Liu, Dongliang
    Keil, Norbert
    Grote, Norbert
    INTEGRATED OPTICS: PHYSICS AND SIMULATIONS, 2013, 8781
  • [10] Thermo-Optic Phase Tuners Analysis and Design for Process Modules on a Silicon Nitride Platform
    Alemany, Ruben
    Munoz, Pascual
    Pastor, Daniel
    Dominguez, Carlos
    PHOTONICS, 2021, 8 (11)