The electrochemiluminescence (ECL) of aqueous solutions of Tb3+, Dy3+, and Eu3+ complexes having a variety of ligand groups was studied using an oxide-covered aluminium electrode. The ligand groups, under study, were the aromatic acids (salicylic, phthalic), the chelatic ligands (ethylenediamine dl(o-hydroxy-phenylacetic acid), EDDHA and ethylenediamine tetraacetic acid, EDTA), as well as Schiff bases: 1,10-disalicylidene-4,7-diaza-1,10-decyldiamine and 2-salicylideneamine-2-hydroxymethyl-1,3-propanediol. The results show that the generated emissions were mainly the result of energy transfer from the ligands to the metals. The best ECL properties were observed in the case of the complexes Tb(III)-EDDHA, Dy(III)-EDDHA, and Dy(III)-salicylic acid. In the ternary systems: Schiff base-Tb(III)-Eu(III) energy transfer to the emitting level of the Eu(III) ion was observed. © 2007 Elsevier B.V. All rights reserved;