An Efficient Three-Stage Split-Step Precise Integration Time-Domain Method for Solving Maxwell's Equations

被引:0
作者
Chi, Mingjun [1 ]
Ma, Xikui [1 ]
Ma, Liang [1 ]
Xiang, Ru [1 ]
Zhu, Xiaojie [2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Elect Engn, State Key Lab Elect Insulat & Power Equipment, Xian 710049, Peoples R China
[2] Politecn Milan, Dipartimento Elettron Informaz & Bioingn, I-20133 Milan, Italy
来源
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS | 2024年 / 23卷 / 12期
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Accuracy; Time-domain analysis; Numerical stability; Dispersion; Thermal stability; Taylor series; Maxwell equations; Finite difference method; precise-integration time-domain (PITD) method; split-step (SS) scheme; NUMERICAL-SOLUTION; REALIZATION; SCATTERING; STABILITY;
D O I
10.1109/LAWP.2024.3465033
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Based on a split-step scheme with second-order accuracy, a three-stage split-step precise-integration time-domain (SS2-PITD) method is proposed for solving Maxwell's equations. The SS2-PITD method has a better performance in computational accuracy and efficiency than the original split-step precise-integration time-domain method. The numerical stability condition of the SS2-PITD method is analytically given, showing that the time step size in SS2-PITD can be much larger than the Courant-Friedrichs-Lewy upper limit. To simulate open region problems, the convolutional perfectly matched layer is extended to the SS2-PITD method. Finally, numerical examples are performed to show the effectiveness of the proposed method.
引用
收藏
页码:4668 / 4672
页数:5
相关论文
共 17 条
[1]   DISPERSION ANALYSIS OF ANISOTROPIC INHOMOGENEOUS WAVE-GUIDES USING COMPACT 2D-FDTD [J].
ASI, A ;
SHAFAI, L .
ELECTRONICS LETTERS, 1992, 28 (15) :1451-1452
[2]   A Switched-Huygens-Subgridding-Based Combined FDTD-PITD Method for Fine Structures [J].
Chi, Mingjun ;
Ma, Xikui ;
Ma, Liang .
IEEE MICROWAVE AND WIRELESS TECHNOLOGY LETTERS, 2023, 33 (07) :947-950
[3]  
Elsherbeni A.Z., 2016, The Finite-Difference Time-Domain Method for Electromagnetics with MATLAB Simulations
[4]   On the numerical stability of the precise integration time-domain (PITD) method [J].
Jiang, Lele ;
Chen, Zhizhang ;
Mao, Junfa .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2007, 17 (07) :471-473
[5]   A split step approach for the 3-D Maxwell's equations [J].
Lee, JW ;
Fornberg, B .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 158 (02) :485-505
[6]   A split-step-scheme-based precise integration time domain method for solving wave equation [J].
Liu, Qi ;
Ma, Xikui ;
Bai, Zhongming ;
Zhuansun, Xu .
COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2014, 33 (1-2) :85-94
[7]   Unified split-step precise integration time-domain method for dispersive media [J].
Liu, Qi ;
Ma, Xihui ;
Chen, Feng .
ELECTRONICS LETTERS, 2013, 49 (18) :1135-1136
[8]   A 3-D precise integration time-domain method without the restraints of the Courant-Friedrich-Levy stability condition for the numerical solution of Maxwell's equations [J].
Ma, Xikui ;
Zhao, Xintai ;
Zhao, Yanzhen .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2006, 54 (07) :3026-3037
[9]   A Memory-Saving Realization of the Perfectly Matched Layer in the Precise-Integration Time-Domain Method [J].
Shao, Jinghui ;
Ma, Xikui ;
Wang, Jiawei .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2018, 17 (03) :414-417
[10]   Modified Explicit Finite-Difference Time-Domain Method for Nonparaxial Wave Scattering From Electromagnetic Metasurfaces [J].
Stewart, Scott ;
Moslemi-Tabrizi, Sanam ;
Smy, Tom. J. ;
Gupta, Shulabh .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2019, 18 (06) :1238-1242