Recursive identification method for a class of Hammerstein-Wiener systems

被引:0
|
作者
Yu, Feng [1 ]
Mao, Zhi-Zhong [1 ]
Jia, Ming-Xing [1 ]
Yuan, Ping [1 ]
Yang, Fei-Sheng [2 ]
机构
[1] School of Information Science and Engineering, Northeastern University, Shenyang 110819, China
[2] School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
来源
关键词
Parameter estimation;
D O I
10.3724/SP.J.1004.2014.00327
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A recursive algorithm is presented to identify the Hammerstein-Wiener system with process noise. Based on parameterizing the nonlinear parts of system using polynomial functions strictly, the optimal recursive update formulas are derived in a sense that the expectation of the sum of square of parameter errors is minimized, which avoids the interference of noise. Uniform convergence conditions together with a coefficient setting method, which expands the convergence domain, are given by means of analyzing the algorithm deeply. Simulation results validate the advantage of this algorithm over the two-stage algorithm. Copyright © 2014 Acta Automatica Sinica. All rights reserved.
引用
收藏
页码:327 / 335
相关论文
共 50 条
  • [31] A Novel Filtering Method for Hammerstein-Wiener State-Space Systems
    Cedeno, Angel L.
    Carvajal, Rodrigo
    Aguero, Juan C.
    2021 IEEE CHILEAN CONFERENCE ON ELECTRICAL, ELECTRONICS ENGINEERING, INFORMATION AND COMMUNICATION TECHNOLOGIES (IEEE CHILECON 2021), 2021, : 57 - 63
  • [32] Recursive Identification of Wiener-Hammerstein Systems with Nonparametric Nonlinearity
    Hu, Xiao-Li
    Jiang, Yue-Ping
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2013, 3 (04) : 311 - 332
  • [33] Identification of Hammerstein-Wiener model with discontinuous input nonlinearity
    Brouri, A.
    El Mansouri, F. Z.
    Chaoui, F. Z.
    Abdelaali, C.
    Giri, F.
    SCIENCE CHINA-INFORMATION SCIENCES, 2023, 66 (12)
  • [34] Identification of pH Process using Hammerstein-Wiener Model
    Abinayadhevi, P.
    Prasad, S. J. Suji
    PROCEEDINGS OF 2015 IEEE 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND CONTROL (ISCO), 2015,
  • [35] Identification of Hammerstein-Wiener model with discontinuous input nonlinearity
    A.BROURI
    F.Z.EL MANSOURI
    F.Z.CHAOUI
    C.ABDELAALI
    F.GIRI
    ScienceChina(InformationSciences), 2023, 66 (12) : 33 - 47
  • [36] Support Vector Regression For Hammerstein-Wiener Model Identification
    Karthik, C.
    Ramalakshmi, A.
    Valarmathi, K.
    2016 INTERNATIONAL CONFERENCE ON COMPUTING TECHNOLOGIES AND INTELLIGENT DATA ENGINEERING (ICCTIDE'16), 2016,
  • [37] Identification of Nonlinear Systems Using the Hammerstein-Wiener Model with Improved Orthogonal Functions
    Nikolic, Sasa S.
    Milovanovic, Miroslav B.
    Dankovic, Nikola B.
    Mitic, Darko B.
    Peric, Stanisa Lj.
    Djordjevic, Andjela D.
    Djekic, Petar S.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2023, 29 (02) : 4 - 11
  • [38] Errors-In-Variables Hammerstein-Wiener model identification
    Su, Hao
    Hou, Jie
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 1378 - 1383
  • [39] Identification of Hammerstein-Wiener models with hysteresis front nonlinearities
    Brouri, Adil
    Chaoui, Fatima-Zahra
    Giri, Fouad
    INTERNATIONAL JOURNAL OF CONTROL, 2022, 95 (12) : 3353 - 3367
  • [40] An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems
    Bai, EW
    AUTOMATICA, 1998, 34 (03) : 333 - 338