Analysis of influence maximization in large-Scale social networks

被引:1
作者
Hu, Jie [1 ]
Meng, Kun [1 ]
Chen, Xiaomin [2 ]
Lin, Chuang [1 ]
Huang, Jiwei [1 ]
机构
[1] Department of Computer Science and Technology, Tsinghua University, Beijing
[2] School of Information Engineering, University of Science and Technology Beijing, Beijing
来源
Performance Evaluation Review | 2014年 / 41卷 / 04期
基金
中国国家自然科学基金;
关键词
Influence Maximization; Series-Parallel Graph; Social Network;
D O I
10.1145/2627534.2627559
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Influence maximization is an important problem in online social networks. With the scale of social networks increasing, the requirements of solutions for influence maximization are becoming more and more strict. In this paper, we discuss two basic methods to compute the influence in general social networks, and then reveal that the computation of influence in series-parallel graph is in linear time complexity. Finally, we propose an novel method to solve influence maximization and show that it has a good performance.
引用
收藏
页码:78 / 81
页数:3
相关论文
共 13 条
[1]  
Balmin A., Hristidis V., Papakonstantinou Y., Objectrank: Authority-Based keyword search in databases, VLDB'04, pp. 564-575
[2]  
Chen W., Wang C., Wang Y., Scalable influence maximization for prevalent viral marketing in large-Scale social networks, KDD'10, pp. 1029-1038
[3]  
Chen W., Wang Y., Yang S., Efficient influence maximization in social networks, KDD'09, pp. 199-208
[4]  
Domingos P., Richardson M., Mining the network value of customers, KDD'01, pp. 57-66
[5]  
Goyal A., Lu W., Lakshmanan L.V., Celf++: Optimizing the greedy algorithm for influence maximization in social networks, Proceedings of the 20th International Conference Companion on World Wide Web, pp. 47-48, (2011)
[6]  
Hintsanen P., Toivonen H., Finding reliable subgraphs from large probabilistic graphs, Data Mining and Knowledge Discovery, 17, pp. 3-23, (2008)
[7]  
Jin R., Liu L., Ding B., Wang H., Distance-Constraint reachability computation in uncertain graphs, Proc. VLDB Endow., 4, 9, pp. 551-562, (2011)
[8]  
Kempe D., Kleinberg J., Tardos E., Maximizing the spread of influence through a social network, KDD'03, pp. 137-146
[9]  
Kimura M., Saito K., Tractable models for information diffusion in social networks, Knowledge Discovery in Databases: PKDD, 4213, pp. 259-271, (2006)
[10]  
Kimura M., Saito K., Nakano R., Extracting influential nodes for information diffusion on a social network, Proceedings of the National Conference on Artificial Intelligence, 22, (2007)