Counting wheat heads using a simulation model

被引:1
作者
Sun, Xiaoyong [1 ]
Jiang, Tianyou [1 ]
Hu, Jiming [1 ]
Song, Zuojie [1 ]
Ge, Yuheng [1 ]
Wang, Yongzhen [1 ]
Liu, Xu [1 ]
Bing, Jianhao [1 ]
Li, Jinshan [1 ]
Zhou, Ziyu [1 ]
Tang, Zhongzhen [1 ]
Zhao, Yan [2 ]
Hao, Jinyu [1 ]
Zuo, Changzhen [1 ]
Geng, Xia [1 ]
Kong, Lingrang [2 ]
机构
[1] Shandong Agr Univ, Coll Informat Sci & Engn, Agr Big Data Res Ctr, Tai An 271018, Shandong, Peoples R China
[2] Shandong Agr Univ, Coll Agron, Natl Key Lab Wheat Improvement, Tai An 271018, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Wheat head counting; Simulation; Deep learning; Object detection; CLIMATE-CHANGE; FOOD SECURITY;
D O I
10.1016/j.compag.2024.109633
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Numerous studies have reported a significant positive correlation between wheat yield and the quantity of wheat heads. However, collecting data on wheat heads in the field poses a challenge for several reasons, including the uncontrollable nature of the environment, inconsistent data quality, and ambiguous data truth. To address these challenges, we developed a simulation strategy to replicate the conditions of a real wheat field, which enabled the data collection process to be conducted indoors over a short period. After applying grayscale image processing to process the simulated wheat images, we trained and tested nine deep learning models: Faster-RCNN, YOLOv7, YOLOv8, CenterNet, SSD, RetinaNet, EfficientDet, Deformable-DETR and DINO. Our results indicated that YOLOv7 performed the best (R2 = 0.963, RMSE = 2.463). We then compared our model trained on simulated wheat data to a model trained on real wheat data (R2 = 0.963 vs 0.972, RMSE = 2.463 vs 2.692). We also achieved good model performance on five test sets: GWHD, SDAU2021-SDAU2024. The results demonstrated the efficacy of our simulation, which provides an efficient and convenient strategy for the precision agriculture community.
引用
收藏
页数:11
相关论文
共 47 条
[1]   Worldwide phylogeography and history of wheat genetic diversity [J].
Balfourier, Francois ;
Bouchet, Sophie ;
Robert, Sandra ;
De Oliveira, Romain ;
Rimbert, Helene ;
Kitt, Jonathan ;
Choulet, Frederic ;
Appels, R. ;
Feuillet, C. ;
Keller, B. ;
Praud, S. ;
Baumann, U. ;
Budak, H. ;
Rogers, J. ;
Eversole, K. ;
Alaux, M. ;
Bejar, B. ;
Lafarge, S. ;
Lagendijk, E. ;
Derory, J. ;
Le Gouis, J. ;
Paux, Etienne .
SCIENCE ADVANCES, 2019, 5 (05)
[2]  
Beal J., 2020, arXiv
[3]   End-to-End Object Detection with Transformers [J].
Carion, Nicolas ;
Massa, Francisco ;
Synnaeve, Gabriel ;
Usunier, Nicolas ;
Kirillov, Alexander ;
Zagoruyko, Sergey .
COMPUTER VISION - ECCV 2020, PT I, 2020, 12346 :213-229
[4]  
Chen XY, 2023, Arxiv, DOI arXiv:2303.09719
[5]   Deep learning for wheat ear segmentation and ear density measurement: From heading to maturity [J].
Dandrifosse, Sebastien ;
Ennadifi, Elias ;
Carlier, Alexis ;
Gosselin, Bernard ;
Dumont, Benjamin ;
Mercatoris, Benoit .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 199
[6]   Recognition of Bloom/Yield in Crop Images Using Deep Learning Models for Smart Agriculture: A Review [J].
Darwin, Bini ;
Dharmaraj, Pamela ;
Prince, Shajin ;
Popescu, Daniela Elena ;
Hemanth, Duraisamy Jude .
AGRONOMY-BASEL, 2021, 11 (04)
[7]   Global Wheat Head Detection Challenges: Winning Models and Application for Head Counting [J].
David, Etienne ;
Ogidi, Franklin ;
Smith, Daniel ;
Chapman, Scott ;
de Solan, Benoit ;
Guo, Wei ;
Baret, Frederic ;
Stavness, Ian .
PLANT PHENOMICS, 2023, 5
[8]   Global Wheat Head Detection (GWHD) Dataset: A Large and Diverse Dataset of High-Resolution RGB-Labelled Images to Develop and Benchmark Wheat Head Detection Methods [J].
David, Etienne ;
Madec, Simon ;
Sadeghi-Tehran, Pouria ;
Aasen, Helge ;
Zheng, Bangyou ;
Liu, Shouyang ;
Kirchgessner, Norbert ;
Ishikawa, Goro ;
Nagasawa, Koichi ;
Badhon, Minhajul A. ;
Pozniak, Curtis ;
de Solan, Benoit ;
Hund, Andreas ;
Chapman, Scott C. ;
Baret, Frederic ;
Stavness, Ian ;
Guo, Wei .
PLANT PHENOMICS, 2020, 2020
[9]   Climate resilient crops for improving global food security and safety [J].
Dhankher, Om Parkash ;
Foyer, Christine H. .
PLANT CELL AND ENVIRONMENT, 2018, 41 (05) :877-884
[10]   CenterNet: Keypoint Triplets for Object Detection [J].
Duan, Kaiwen ;
Bai, Song ;
Xie, Lingxi ;
Qi, Honggang ;
Huang, Qingming ;
Tian, Qi .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :6568-6577