Traditional protocols and optimization methods lead to absent expression in a mycoplasma cell-free gene expression platform

被引:3
作者
Sakai A. [1 ]
Deich C.R. [2 ]
Nelissen F.H.T. [1 ]
Jonker A.J. [1 ]
Bittencourt D.M.D.C. [3 ,4 ]
Kempes C.P. [5 ]
Wise K.S. [3 ]
Heus H.A. [1 ]
Huck W.T.S. [1 ]
Adamala K.P. [2 ]
Glass J.I. [3 ]
机构
[1] Institute for Molecules and Materials, Radboud University, Nijmegen
[2] Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN
[3] Synthetic Biology & Bioenergy, J. Craig Venter Institute, La Jolla, San Diego, CA
[4] Embrapa Genetic Resources and Biotechnology, National Institute of Science and Technology-Synthetic Biology, DF, Brasília
[5] Santa Fe Institute, Santa Fe, NM
来源
Synthetic Biology | 2022年 / 7卷 / 01期
关键词
Cell-free expression system; In vitro transcription; In vitro translation; Mycoplasma; Ribonuclease;
D O I
10.1093/synbio/ysac008
中图分类号
学科分类号
摘要
Cell-free expression (CFE) systems are one of the main platforms for building synthetic cells. A major drawback is the orthogonality of cell-free systems across species. To generate a CFE system compatible with recently established minimal cell constructs, we attempted to optimize a Mycoplasma bacterium-based CFE system using lysates of the genome-minimized cell JCVI-syn3A (Syn3A) and its close phylogenetic relative Mycoplasma capricolum (Mcap). To produce mycoplasma-derived crude lysates, we systematically tested methods commonly used for bacteria, based on the S30 protocol of Escherichia coli. Unexpectedly, after numerous attempts to optimize lysate production methods or composition of feeding buffer, none of the Mcap or Syn3A lysates supported cell-free gene expression. Only modest levels of in vitro transcription of RNA aptamers were observed. While our experimental systems were intended to perform transcription and translation, our assays focused on RNA. Further investigations identified persistently high ribonuclease (RNase) activity in all lysates, despite removal of recognizable nucleases from the respective genomes and attempts to inhibit nuclease activities in assorted CFE preparations. An alternative method using digitonin to permeabilize the mycoplasma cell membrane produced a lysate with diminished RNase activity yet still was unable to support cell-free gene expression. We found that intact mycoplasma cells poisoned E. coli cell-free extracts by degrading ribosomal RNAs, indicating that the mycoplasma cells, even the minimal cell, have a surface-Associated RNase activity. However, it is not clear which gene encodes the RNase. This work summarizes attempts to produce mycoplasma-based CFE and serves as a cautionary tale for researchers entering this field. Graphical Abstract © 2022 The Author(s) 2022.
引用
收藏
相关论文
共 71 条
  • [1] Garenne D., Thompson S., Brisson A., Khakimzhan A., Noireaux V., The all-E. coliTXTL toolbox 3.0: new capa-bilities of a cell-free synthetic biology platform, Synth. Biol. (Oxford, England), 6, pp. 1-8, (2021)
  • [2] Shimizu Y., Inoue A., Tomari Y., Suzuki T., Yokogawa T., Nishikawa K., Ueda T., Cell-free translation recon-stituted with purified components, Nat. Biotechnol, 19, pp. 751-755, (2001)
  • [3] Reuss D.R., Commichau F.M., Gundlach J., Zhu B., Stolke J., The blueprint of a minimal cell: MiniBacillus, Microbiol. Mol. Biol. Rev, 80, pp. 955-987, (2016)
  • [4] Venetz J.E., Del Medico L., Wolfle A., Schachle P., Bucher Y., Appert D., Tschan F., Flores-Tinoco C.E., Van Kooten M., Guen-noun R., Et al., Chemical synthesis rewriting of a bacterial genome to achieve design flexibility and biological functionality, Proc. Natl. Acad. Sci. U. S. A, 116, pp. 8070-8079, (2019)
  • [5] Breuer M., Earnest T.M., Merryman C., Wise K.S., Sun L., Lynott M.R., Hutchison C.A., Smith H.O., Lapek J.D., Gonzalez D.J., Et al., Essential metabolism for a minimal cell, eLife, 8, (2019)
  • [6] Lartigue C., Glass J.I., Alperovich N., Pieper R., Parmar P.P., Hutchison C.A., Smith H.O., Venter J.C., Genome trans-plantation in bacteria: changing one species to another, Science, 317, pp. 632-638, (2007)
  • [7] Gibson D.G., Glass J.I., Lartigue C., Noskov V.N., Chuang R.-Y., Algire M.A., Benders G.A., Montague M.G., Ma L., Moodie M.M., Et al., Creation of a bacterial cell controlled by a chemically synthesized genome, Science, 329, pp. 52-56, (2010)
  • [8] Hutchison C.A., Chuang R.-Y., Noskov V.N., Assad-Garcia N., Deerinck T.J., Ellisman M.H., Gill J., Kannan K., Karas B.J., Ma L., Et al., Design and synthesis of a minimal bacterial genome, Science, 351, (2016)
  • [9] Blattner F.R., Plunkett G., Bloch C.A., Perna N.T., Burland V., Riley M., Collado-Vides J., Glasner J.D., Rode C.K., Mayhew G.F., Et al., The complete genome sequence of Escherichia coli K-12, Science, 277, pp. 1453-1462, (1997)
  • [10] Pelletier J.F., Sun L., Wise K.S., Assad-Garcia N., Karas B.J., Deer-inck T.J., Ellisman M.H., Mershin A., Gershenfeld N., Chuang R.-Y., Et al., Genetic requirements for cell division in a genomically minimal cell, Cell, 184, pp. 2430-2440, (2021)