Magnetic-Field Integral Equation [EM Programmer's Notebook]

被引:8
作者
Ofluoʇlu, Atif Emre [1 ]
Çiftçi, Tolga [1 ,3 ]
Ergül, Özgür [2 ,3 ]
机构
[1] Middle East Technical University, Ankara
[2] Department of Electrical and Electronics Engineering, Middle East Technical University (METU), Ankara
关键词
Context modeling; Electromagnetic fields; Electromagnetic scattering; Integral equations;
D O I
10.1109/MAP.2015.2453913
中图分类号
学科分类号
摘要
Although its accuracy problems have been shown many times in the literature, the magnetic-field integral equation (MFIE), either alone or in the context of the combined-field integral equation (CFIE), is still used carelessly with the conventional discretizations. In this article, we once again demonstrate the inaccuracy of the MFIE on very simple scattering problems, whose traditional solutions with the MFIE can be extremely misleading, showing the necessity of alternative discretizations. © 1990-2011 IEEE.
引用
收藏
页码:134 / 142
页数:8
相关论文
共 33 条
[21]  
Warnick K.F., Peterson A.F., 3D MFIE accuracy improvement using regularization, Proc. IEEE Antennas Propagation Society Int. Symp., Honolulu, HI, 2007, pp. 4857-4860
[22]  
Ergul O., Gurel L., Linear-linear basis functions for MLFMA solutions of magnetic-field and combined-field integral equations, IEEE Trans. Antennas Propag., 55, 4, pp. 1103-1110, (2007)
[23]  
Cools K., Andriulli F.P., Olyslager F., Michielssen E., Improving the MFIE's accuracy by using a mixed discretization, Proc. IEEE Antennas Propagation Society Int. Symp., Charleston, SC, 2009, pp. 1-4
[24]  
Cools K., Andriulli F.P., De Zutter D., Michielssen E., Accurate and conforming mixed discretization of the MFIE, IEEE Antennas Wireless Propagat. Lett., 10, pp. 528-531, (2011)
[25]  
Ulku H.A., Bogaert I., Cools K., Andriulli F.P., Batci H., On the mixed discretization of the time domain magnetic field integral equation, Proc. Int. Conf. Electromagnetics Advanced Applications, Cape Town, South Africa, 2012, pp. 817-819
[26]  
Beghein Y., Cools K., Andriulli F.P., DeZutter D., Accurate and conforming mixed discretization of the chiral Müller equation, Proc. IEEE Antennas Propagation Society Int. Symp., Chicago, IL, 2012, pp. 1-2
[27]  
Bogaert I., Cools K., Andriulli F.P., Batci H., Low-frequency scaling of the standard and mixed magnetic field and Müller integral equations, IEEE Trans. Antennas Propag., 62, 2, pp. 822-831, (2014)
[28]  
Pan G.G., Ming J., Zhang L., Ming B., An efficient scattering algorithm for smooth and sharp surfaces: Coiflet-based scalar MFIE, IEEE Trans. Antennas Propag., 62, 8, pp. 4241-4250, (2014)
[29]  
Ergul O., Gurel L., Discretization error due to the identity operator in surface integral equations, Comput. Phys. Commun., 180, 10, pp. 1746-1752, (2009)
[30]  
Chew W.C., Davis C.P., Warnick K.F., Nie Z.P., Hu J., Yan S., Gurel L., EFIE and MFIE, why the difference, Proc. IEEE Antennas Propagation Society Int. Symp., San Diego, CA, 2008, pp. 1-2