共 13 条
[1]
Guo L., Chen H., The H1-Galerkin mixed finite element method for the Sobolev equations, J. Sys. Sci. Math. Sci., 6, pp. 301-314, (2006)
[2]
Pani A.K., An H1-Galerkin mixed finite element method for parabolic partial differential equations, SIAM J. Numerical Anal., 35, pp. 721-727, (1998)
[3]
Park E.J., Mixed finite element methods for nonlinear second-order elliptic problems, SIAM J. Numerical Anal., 32, pp. 865-885, (1995)
[4]
Shi D., Guan H., A class of Crouzeix-Raviart type nonconforming finite element methods for parabolic variational inequality problem with moving grid on anisotropic meshes, Hokkaido Math. J., 36, pp. 687-709, (2007)
[5]
Shi D., Liang H., Superconvergence analysis of Wilson element on anisotropic meshes, Applied Math. Mech., 28, pp. 119-125, (2007)
[6]
Shi D., Wang H., Nonconforming H1-Galerkin mixed FEM for Sobolev equations on anisotropic meshes, Acta Math. Appl. Sin., 25, pp. 335-344, (2009)
[7]
Shi D., Ren J., Nonconforming mixed finite element method for the stationary conduction-convection problem, Int. J. Numerical Anal. Modeling, 6, pp. 293-310, (2009)
[8]
Shi D., Zhou J., A new H1-Galerkin nonconforming mixed finite element scheme of Generalized nerve conduction equations, J. Henan Normal Univ., 38, pp. 1-6, (2010)
[9]
Shi D., Wang H.H., Guo C., Anisotropic rectangular nonconforming finite element analysis for Sobolev equations, Applied Math. Mech., 29, pp. 1203-1214, (2008)
[10]
Shi D.Y., Guan H.B., A class of H1 Galerkin mixed finite element method for the viscoelastic equations, Nume. Math. J. Chin. Univ., 33, pp. 279-288, (2007)