H1-galerkin mixed finite element method for parabolic equations

被引:0
作者
机构
[1] Department of Basic Science, College of Henan Mechanical and Electrical Engineering, Xinxiang, Henan
[2] School of Information and Statistics, Guangxi University of Finance and Economics, Nanning, Guangxi
来源
Wang, L. | 1600年 / Asian Network for Scientific Information卷 / 13期
关键词
Error estimates; H1-Galerkin; Mixed finite element; Nonconforming; Semilinear parabolic equation;
D O I
10.3923/jas.2013.4241.4244
中图分类号
学科分类号
摘要
A new nonconforming H1-Galerkin mixed finite element scheme of semilinear parabolic equations is proposed. The same optimal error estimates is presented and the error estimates are obtained by use of the interpolation operator instead of the conventional elliptic projection which is an indispensable tool in the convergence analysis of traditional finite element methods in previous literature. © 2013 Asian Network for Scientific Information.
引用
收藏
页码:4241 / 4244
页数:3
相关论文
共 13 条
[1]  
Guo L., Chen H., The H1-Galerkin mixed finite element method for the Sobolev equations, J. Sys. Sci. Math. Sci., 6, pp. 301-314, (2006)
[2]  
Pani A.K., An H1-Galerkin mixed finite element method for parabolic partial differential equations, SIAM J. Numerical Anal., 35, pp. 721-727, (1998)
[3]  
Park E.J., Mixed finite element methods for nonlinear second-order elliptic problems, SIAM J. Numerical Anal., 32, pp. 865-885, (1995)
[4]  
Shi D., Guan H., A class of Crouzeix-Raviart type nonconforming finite element methods for parabolic variational inequality problem with moving grid on anisotropic meshes, Hokkaido Math. J., 36, pp. 687-709, (2007)
[5]  
Shi D., Liang H., Superconvergence analysis of Wilson element on anisotropic meshes, Applied Math. Mech., 28, pp. 119-125, (2007)
[6]  
Shi D., Wang H., Nonconforming H1-Galerkin mixed FEM for Sobolev equations on anisotropic meshes, Acta Math. Appl. Sin., 25, pp. 335-344, (2009)
[7]  
Shi D., Ren J., Nonconforming mixed finite element method for the stationary conduction-convection problem, Int. J. Numerical Anal. Modeling, 6, pp. 293-310, (2009)
[8]  
Shi D., Zhou J., A new H1-Galerkin nonconforming mixed finite element scheme of Generalized nerve conduction equations, J. Henan Normal Univ., 38, pp. 1-6, (2010)
[9]  
Shi D., Wang H.H., Guo C., Anisotropic rectangular nonconforming finite element analysis for Sobolev equations, Applied Math. Mech., 29, pp. 1203-1214, (2008)
[10]  
Shi D.Y., Guan H.B., A class of H1 Galerkin mixed finite element method for the viscoelastic equations, Nume. Math. J. Chin. Univ., 33, pp. 279-288, (2007)