Influence of the corrosion on the surface magnetic properties in amorphous and nanocrystalline materials

被引:0
作者
García J.A. [1 ]
Pierna Á.R. [2 ]
机构
[1] Departamento de Física, Universidad de Oviedo, 33007 Oviedo, C/ Calvo Sotelo s/n
[2] Departamento de Ingeniería Química y Medio Ambiente, Universidad del País Vasco, 20080 San Sebastián
关键词
Biocorrosion; Biosensors; Corrosion; Magnetic properties; Magnetoimpedance; Metallic glasses; Nanocrystalline;
D O I
10.2174/1874464811003010013
中图分类号
学科分类号
摘要
In this review article recent studies about the corrosion and the influence of corrosion on the surface magnetic properties of amorphous and nanocrystalline magnetic ribbons are presented. The studies have been performed in Fe-based and Co-based amorphous ribbons, because these ribbons are used in different magnetic sensors. In the first case the investigation has been focused on the corrosion, the influence of corrosion in the surface magnetic properties and the influence of the nickel content on the electrochemical behaviour. The results show that in the amorphous samples, when the oxidized layer increases, the surface saturation magnetization decreases. However, in the nanocrystalline samples the surface saturation magnetization does not change significantly. The values of the surface coercive field for the oxidized and non oxidized samples with the same Ni content are practically the same. In the case of Co-based ribbons the study has been focused in the corrosion process and how the corrosion affects the magnetoimpedance response of the ribbons. The results indicate that FeCoCrSiB ribbons show an excellent corrosion stability and high magnetoimpedance response, meanwhile FeCoSiB ribbons show low corrosion resistance but high magnetoimpedance response. The relevant patents discussed in this article cover the areas connected with the application, magnetic behaviour and corrosion of amorphous and nanocrystalline materials. © 2010 Bentham Science Publishers Ltd.
引用
收藏
页码:13 / 25
页数:12
相关论文
共 46 条
[1]  
Yoshizawa Y., Oguna S., Yamauchi K., New Fe-based soft magnetic alloys composed of ultrafine grain structure, J Appl Phys, 64, 10, pp. 6044-6046, (1988)
[2]  
Bruner M., (2008)
[3]  
Vazquez M., Hernando A., Review article: A soft magnetic wire for sensor applications, J Appl Phys, 29, 4, pp. 939-949, (1966)
[4]  
Kraus L., Bydzovsky J., Svec P., Continuous stresses annealing of amorphous ribbons for strain sensing applications, Sens Actuators, 106, 1-3, pp. 117-120, (2003)
[5]  
Ausiano G., Barone A.C., Hison C., Et al., Magnetoelastic sensor application in civil buildings monitoring, Sens Actuators, pp. 123-124, (2005)
[6]  
Garcia-Arribas A., Barandiaran J.M., Gutierrez J., Magnetoelastic sensors, Magnetoleastic Sensors In Enciclopedia of Sensors, 10, pp. 1-21, (2006)
[7]  
Brunner M., (2008)
[8]  
Diegle R.B., Lineman D.M., Thomas M.T., Repassivation kinetics of glassy alloys, Electrochem Soc Extended Abstr, 143, pp. 82-82, (1982)
[9]  
Massiani Y., Crousier J., Picq G., Vennereau P., Electrochemical and photoelectrochemical behavior of 32Fe36Ni6B12P14Cr amorphous alloys under anodic polarization, Surf Sci, 162, 1-3, pp. 801-808, (1985)
[10]  
Lopez M.F., Escudero M.L., Vida E., Pierna A.R., Corrosion behaviour of amorphous Fe-Cr-Ni-(Si,P) alloys, Electrochem Acta, 42, pp. 659-665, (1997)