ENERGY-STABLE AND LINEARLY WELL-BALANCED NUMERICAL SCHEMES FOR THE NONLINEAR SHALLOW WATER EQUATIONS WITH THE CORIOLIS FORCE

被引:0
作者
Audusse, Emmanuel [1 ]
Dubos, Virgile [2 ]
Gaveau, Noemie [3 ]
Penel, Yohan [4 ]
机构
[1] Universite, Inst Galile, LAGA, Sorbonne Paris Nord, F-93430 Villetaneuse, France
[2] Inst Polytech Paris, POEMS, INRIA, ENSTA Paris,CNRS, F-91120 Palaiseau, France
[3] Univ Orleans, Univ Tours, Inst Denis Poisson, CNRS UMR, F-45067 Orleans, France
[4] Sorbonne Univ, INRIA Paris, CNRS JLLteam ANGE, F-75589 Paris, France
关键词
shallow water equations; Coriolis force; well-balanced schemes; colocated finite- volume schemes; energy-decreasing schemes; GEOSTROPHIC ADJUSTMENT; TERM;
D O I
10.1137/22M1515707
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze a class of energy-stable and linearly well-balanced numerical schemes dedicated to the nonlinear shallow water equations with the Coriolis force. The proposed algorithms rely on colocated finite-difference approximations formulated on Cartesian geometries. They involve appropriate diffusion terms in the numerical fluxes, expressed as discrete versions of the linear geostrophic equilibrium. We show that the resulting methods ensure semidiscrete energy estimates. Among the proposed algorithms, a colocated finite-volume scheme is described. Numerical results show a very clear improvement around the nonlinear geostrophic equilibrium when compared to those of classic Godunov-type schemes.
引用
收藏
页码:A1 / A23
页数:23
相关论文
共 29 条
[11]   Reflections on the early development of the "AUSM family" of Riemann solvers [J].
Edwards, J. R. .
SHOCK WAVES, 2019, 29 (05) :601-609
[12]  
Eymard R, 2000, HDBK NUM AN, V7, P713
[13]  
GOSSE L., 2013, SIMAI SPR SER, V2
[14]   A well-balanced scheme for the numerical processing of source terms in hyperbolic equations [J].
Greenberg, JM ;
Leroux, AY .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (01) :1-16
[15]   Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations [J].
Jin, S .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (02) :441-454
[16]  
Leveque R.J., 2002, FINITE VOLUME METHOD, DOI [10.1017/CBO9780511791253, DOI 10.1017/CBO9780511791253]
[17]   A sequel to AUSM: AUSM(+) [J].
Liou, MS .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 129 (02) :364-382
[18]   A NEW FLUX SPLITTING SCHEME [J].
LIOU, MS ;
STEFFEN, CJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 107 (01) :23-39
[19]   An asymptotic preserving scheme for the two-dimensional shallow water equations with Coriolis forces [J].
Liu, Xin ;
Chertock, Alina ;
Kurganov, Alexander .
JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 391 :259-279
[20]   Accurate representation of geostrophic and hydrostatic balance in unstructured mesh finite element ocean modelling [J].
Maddison, J. R. ;
Marshall, D. P. ;
Pain, C. C. ;
Piggott, M. D. .
OCEAN MODELLING, 2011, 39 (3-4) :248-261