Application of fractional Brownian motion particle tracking model to coastal contaminant dispersion

被引:0
|
作者
Nantong University, Nantong 226001, China [1 ]
不详 [2 ]
不详 [3 ]
机构
来源
Shuili Xuebao | 2009年 / 12卷 / 1517-1523期
关键词
Binary alloys - Uranium alloys - Potassium alloys;
D O I
暂无
中图分类号
学科分类号
摘要
The observations on non-Fickian phenomenon in coastal waters indicate that in the surface waters, the Hurst index H is not limited in the range of 0~1. In order to let Apparent Hurst exponent be greater than 1, an accelerated fractional Brownian motion is introduced based on the fractional Brownian motion. A new particle tracking technique is established to model the non-Fickian dispersion in coastal waters. The method of modeling the non-Fickian pollutant dispersion using particle clouds is studied. The comparison of observed data and the calcutation result using a traditional Fickian diffusion model from HR Wallingford Ltd in UK, shows that the model is feasible.
引用
收藏
相关论文
共 50 条
  • [31] Order estimation for a fractional Brownian motion model of glucose control
    Panunzi, Simona
    Borri, Alessandro
    D'Orsi, Laura
    De Gaetano, Andrea
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 127
  • [32] A stochastic parabolic model of MEMS driven by fractional Brownian motion
    Ourania Drosinou
    Christos V. Nikolopoulos
    Anastasios Matzavinos
    Nikos I. Kavallaris
    Journal of Mathematical Biology, 2023, 86
  • [33] Self-avoiding Fractional Brownian Motion—The Edwards Model
    Martin Grothaus
    Maria João Oliveira
    José Luís da Silva
    Ludwig Streit
    Journal of Statistical Physics, 2011, 145 : 1513 - 1523
  • [34] Reinsurance control in a model with liabilities of the fractional Brownian motion type
    Frangos, N. E.
    Vrontos, S. D.
    Yannacopoulos, A. N.
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2007, 23 (05) : 403 - 428
  • [35] SAR Interferometric Phase and Skew Fractional Brownian Motion Model
    Danudirdjo, Donny
    Hirose, Akira
    CONFERENCE PROCEEDINGS OF 2013 ASIA-PACIFIC CONFERENCE ON SYNTHETIC APERTURE RADAR (APSAR), 2013, : 273 - 276
  • [36] Fractional Brownian motion ruin model with random inspection time
    Jasnovidov, Grigori
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2025,
  • [37] A stochastic parabolic model of MEMS driven by fractional Brownian motion
    Drosinou, Ourania
    Nikolopoulos, Christos V.
    Matzavinos, Anastasios
    Kavallaris, Nikos I.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2023, 86 (05)
  • [38] Geometric fractional Brownian motion model for commodity market simulation
    Ibrahim, Siti Nur Iqmal
    Misiran, Masnita
    Laham, Mohamed Faris
    ALEXANDRIA ENGINEERING JOURNAL, 2021, 60 (01) : 955 - 962
  • [39] Particle picture interpretation of some Gaussian processes related to fractional Brownian motion
    Bojdecki, Tomasz
    Talarczyk, Anna
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2012, 122 (05) : 2134 - 2154
  • [40] PRACTICAL APPLICATION OF FRACTIONAL BROWNIAN-MOTION AND NOISE TO SYNTHETIC HYDROLOGY
    CHI, M
    NEAL, E
    YOUNG, GK
    WATER RESOURCES RESEARCH, 1973, 9 (06) : 1523 - 1533