Application of fractional Brownian motion particle tracking model to coastal contaminant dispersion

被引:0
|
作者
Nantong University, Nantong 226001, China [1 ]
不详 [2 ]
不详 [3 ]
机构
来源
Shuili Xuebao | 2009年 / 12卷 / 1517-1523期
关键词
Binary alloys - Uranium alloys - Potassium alloys;
D O I
暂无
中图分类号
学科分类号
摘要
The observations on non-Fickian phenomenon in coastal waters indicate that in the surface waters, the Hurst index H is not limited in the range of 0~1. In order to let Apparent Hurst exponent be greater than 1, an accelerated fractional Brownian motion is introduced based on the fractional Brownian motion. A new particle tracking technique is established to model the non-Fickian dispersion in coastal waters. The method of modeling the non-Fickian pollutant dispersion using particle clouds is studied. The comparison of observed data and the calcutation result using a traditional Fickian diffusion model from HR Wallingford Ltd in UK, shows that the model is feasible.
引用
收藏
相关论文
共 50 条
  • [1] A non-Fickian, particle-tracking diffusion model based on fractional Brownian motion
    Addison, PS
    Qu, B
    Nisbet, A
    Pender, G
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1997, 25 (12) : 1373 - 1384
  • [2] A method for modelling dispersion dynamics in coastal waters using fractional Brownian motion
    Addison, PS
    JOURNAL OF HYDRAULIC RESEARCH, 1996, 34 (04) : 549 - 561
  • [3] A generalized Brownian motion model for turbulent relative particle dispersion
    Shivamoggi, B. K.
    PHYSICS LETTERS A, 2016, 380 (36) : 2809 - 2814
  • [4] Some extensions of fractional Brownian motion and sub-fractional Brownian motion related to particle systems
    Bojdecki, Tomasz
    Gorostiza, Luis G.
    Talarczyk, Anna
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2007, 12 : 161 - 172
  • [5] A fractional Brownian motion model of cracking
    Addison, PS
    Dougan, LT
    Ndumu, AS
    Mackenzie, WMC
    PARADIGMS OF COMPLEXITY: FRACTALS AND STRUCTURES IN THE SCIENCES, 2000, : 117 - 123
  • [6] ARCH model and fractional Brownian motion
    Bahamonde, Natalia
    Torres, Soledad
    Tudor, Ciprian A.
    STATISTICS & PROBABILITY LETTERS, 2018, 134 : 70 - 78
  • [7] Single-particle tracking data reveal anticorrelated fractional Brownian motion in crowded fluids
    Weiss, Matthias
    PHYSICAL REVIEW E, 2013, 88 (01):
  • [8] The application of fractional brownian motion in option pricing
    Zhou, Qing-Xin
    International Journal of Multimedia and Ubiquitous Engineering, 2015, 10 (01): : 173 - 182
  • [9] Incorporating memory effect into a fractional stochastic diffusion particle tracking model for suspended sediment using Malliavin-Calculus-based fractional Brownian Motion
    Shen, Stanley W.
    Tsai, Christina W.
    CHAOS SOLITONS & FRACTALS, 2024, 187
  • [10] A model for describing the velocity of a particle in Brownian motion by Robotnov function based fractional operator
    Kumar, Sunil
    Ghosh, Surath
    Lotayif, Mansour S. M.
    Samet, Bessem
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (03) : 1435 - 1449